Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Sep;6(5):537-44.
doi: 10.1055/s-2004-821270.

Origin and evolution of the light-dependent protochlorophyllide oxidoreductase (LPOR) genes

Affiliations
Comparative Study

Origin and evolution of the light-dependent protochlorophyllide oxidoreductase (LPOR) genes

J Yang et al. Plant Biol (Stuttg). 2004 Sep.

Abstract

Light-dependent NADPH-protochlorophyllide oxidoreductase (LPOR) is a nuclear-encoded chloroplast protein in green algae and higher plants which catalyzes the light-dependent reduction of protochlorophyllide to chlorophyllide. Light-dependent chlorophyll biosynthesis occurs in all oxygenic photosynthetic organisms. With the exception of angiosperms, this pathway coexists with a separate light-independent chlorophyll biosynthetic pathway, which is catalyzed by light-independent protochlorophyllide reductase (DPOR) in the dark. In contrast, the light-dependent function of chlorophyll biosynthesis is absent from anoxygenic photosynthetic bacteria. Consequently, the question is whether cyanobacteria are the ancestors of all organisms that conduct light-dependent chlorophyll biosynthesis. If so, how did photosynthetic eukaryotes acquire the homologous genes of LPOR in their nuclear genomes? The large number of complete genome sequences now available allow us to detect the evolutionary history of LPOR genes by conducting a genome-wide sequence comparison and phylogenetic analysis. Here, we show the results of a detailed phylogenetic analysis of LPOR and other functionally related enzymes in the short chain dehydrogenase/reductase (SDR) family. We propose that the LPOR gene originated in the cyanobacterial genome before the divergence of eukaryotic photosynthetic organisms. We postulated that the photosynthetic eukaryotes obtained their LPOR homologues through endosymbiotic gene transfer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources