Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Mar;3(1):6-15.
doi: 10.1109/tnb.2004.824257.

Electron beam irradiation for structuring of molecular assemblies

Affiliations
Review

Electron beam irradiation for structuring of molecular assemblies

Victor Erokhin et al. IEEE Trans Nanobioscience. 2004 Mar.

Abstract

Nontraditional applications of electron beam irradiation for patterning of molecular assemblies are considered. The electron beam can have the following effects on molecular layers: destruction of molecular structure under e-beam irradiation with a successive formation of new molecular system when the irradiation is stopped; variation of the properties of the layer after e-beam irradiation; crosslinking of molecules in the layer under irradiation; modification of the templates for the successive film growth, providing different growing conditions in irradiated and nonirradiated areas; and activation of the solid support surface and molecular systems in the film resulting in the increased adhesion of the layer to the substrate in irradiated areas. All these effects were used for patterning of thin layers of different compounds. Five classes of molecular systems were considered, namely, films of simple surfactant molecules, layers of charge-transfer complexes, films of conducting polymers, aggregated nanoparticulate layers and films of nanoengineered polymeric capsules. Characteristic features of patterning processes in each particular case are discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources