Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 21:4:12.
doi: 10.1186/1471-213X-4-12.

Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote

Affiliations

Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote

Konstantin Lepikhov et al. BMC Dev Biol. .

Abstract

Background: In the mouse zygote the paternal genome undergoes dramatic structural and epigenetic changes. Chromosomes are decondensed, protamines replaced by histones and DNA is rapidly and actively demethylated. The epigenetic asymmetry between parental genomes remains at least until the 2-cell stage suggesting functional differences between paternal and maternal genomes during early cleavage stages.

Results: Here we analyzed the timing of histone deposition on the paternal pronucleus and the dynamics of histone H3 methylation (H3/K4mono-, H3/K4tri- and H3/K9di-methylation) immediately after fertilization. Whereas maternal chromatin maintains all types of histone H3 methylation throughout the zygotic development, paternal chromosomes acquire new and unmodified histones shortly after fertilization. In the following hours we observe a gradual increase in H3/K4mono-methylation whereas H3/K4tri-methylation is not present before latest pronuclear stages. Histone H3/K9di-methylation is completely absent from the paternal pronucleus, including metaphase chromosomes of the first mitotic stage.

Conclusion: Parallel to the epigenetic asymmetry in DNA methylation, chromatin modifications are also different between both parental genomes in the very first hours post fertilization. Whereas methylation at H3/K4 gradually becomes similar between both genomes, H3/K9 methylation remains asymmetric.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Dynamic changes in chromatin of zygotes at different pronuclear stages. DNA is visualized by DAPI (blue colour) staining. Mouse monoclonalanti PanHistones antibodies were detected by fluorescein conjugated anti-mouse secondary antibodies (green colour). Specific rabbit polyclonal antibodies, recognizing H3/K4monoMe (a), H3/K4triMe (b) or H3/K9diMe (c) were detected by Rhodamine Red-X conjugated anti-rabbit secondary antibodies (red colour).
Figure 2
Figure 2
Distribution of histones and H3/K4monoMe in the zygotes at late PN0 stage. At this stage histones (green signal) are detectable in both male (♂) and female (♀) pronuclei, whereas H3/K4monoMe (red signal) is only detectable in female pronucleus and polar body (pb).
Figure 3
Figure 3
Distribution of H3/K4triMe and H3/K9diMe in metaphase chromosomes during the latter portion of the first cell cycle. (a) Distribution of H3/K4triMe. Paternally and maternally derived chromosomes show equal staining pattern along the whole length of chromosomes. (b) Distribution of H3/K9diMe. This type of modification is not detectable on paternal chromosomes and in maternal chromosomes is mostly associated with centromeres.

References

    1. Lachner M, O'Sullivan RJ, Jenuwein T. An epigenetic road map for histone lysine methylation. J Cell Sci. 2003;116:2117–2124. doi: 10.1242/jcs.00493. - DOI - PubMed
    1. Lachner M, Jenuwein T. The many faces of histone lysine methylation. Curr Opin Cell Biol. 2002;14:286–298. doi: 10.1016/S0955-0674(02)00335-6. - DOI - PubMed
    1. Soppe WJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. Embo J. 2002;21:6549–6559. doi: 10.1093/emboj/cdf657. - DOI - PMC - PubMed
    1. Tamaru H, Zhang X, McMillen D, Singh PB, Nakayama J, Grewal SI, Allis CD, Cheng X, Selker EU. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet. 2003;34:75–79. doi: 10.1038/ng1143. - DOI - PubMed
    1. Xin H, Yoon HG, Singh PB, Wong J, Qin J. Components of a pathway maintaining histone modification and heterochromatin protein 1 binding at the pericentric heterochromatin in Mammalian cells. J Biol Chem. 2004;279:9539–9546. doi: 10.1074/jbc.M311587200. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources