Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov-Dec;26(3-4):236-45.
doi: 10.1016/j.ssnmr.2004.03.009.

Nuclear magnetic resonance study of the electron-doped high-temperature superconducting cuprates

Affiliations

Nuclear magnetic resonance study of the electron-doped high-temperature superconducting cuprates

G V M Williams et al. Solid State Nucl Magn Reson. 2004 Nov-Dec.

Abstract

Nuclear magnetic resonance (NMR) measurements have been made on two of the electron-doped high-temperature superconducting cuprates (HTSCs), Pr(2-x)Ce(x)CuO(4) and Sr(0.9)La(0.1)CuO(2) that represent the two known electron-doped structures. The results are compared with the more-studied hole-doped HTSCs. We show that the electron and hole-doped HTSCs probe a similar antiferromagnetic spin fluctuation spectrum in the normal state, which provides support for theories of superconductivity where the pairing is mediated by antiferromagnetic spin fluctuations and the superconducting order parameter has a [Formula: see text] symmetry. Contrary to results from underdoped and hole-doped HTSCs, there is no evidence for a normal-state pseudogap in the NMR data from measurements on the electron-doped HTSCs. Therefore, the electron-doped HTSCs can be better compared with overdoped and hole-doped HTSCs where the normal-state pseudogap is absent. The antiferromagnetic spin fluctuation spectrum as probed by the Cu spin-lattice relaxation rate, is independent of the doped electrons per Cu. A similar effect is observed in the overdoped and hole-doped HTSC, Y(1-x)Ca(x)Ba(2)Cu(3)O(7-delta) for a hole concentration range of approximately 0.063. The anomalous Cu NMR linewidth anisotropy observed in the electron-doped HTSCs suggests a small and static spin variation for temperatures up to room temperature.

PubMed Disclaimer

Similar articles

LinkOut - more resources