The osmotic/calcium stress theory of brain damage: are free radicals involved?
- PMID: 1538823
- DOI: 10.1007/BF00966860
The osmotic/calcium stress theory of brain damage: are free radicals involved?
Abstract
This overview presents data showing that glucose use increases and that excitatory amino acids (i.e., glutamate, aspartate), taurine and ascorbate increase in the extracellular fluid during seizures. During the cellular hyperactive state taurine appears to serve as an osmoregulator and ascorbate may serve as either an antioxidant or as a pro-oxidant. Finally, a unifying hypothesis is given for seizure-induced brain damage. This unifying hypothesis states that during seizures there is a release of excitatory amino acids which act on glutamatergic receptors, increasing neuronal activity and thereby increasing glucose use. This hyperactivity of cells causes an influx of calcium (i.e., calcium stress) and water movements (i.e., osmotic stress) into the cells that culminate in brain damage mediated by reactive oxygen species.
Similar articles
-
Perinatal brain injury.J Perinat Med. 2000;28(4):261-85. doi: 10.1515/JPM.2000.034. J Perinat Med. 2000. PMID: 11031697 Review.
-
Prolonged neonatal seizures exacerbate hypoxic-ischemic brain damage: correlation with cerebral energy metabolism and excitatory amino acid release.Dev Neurosci. 2002;24(5):367-81. doi: 10.1159/000069049. Dev Neurosci. 2002. PMID: 12640175
-
Mechanisms of asphyxial brain damage, and possible pharmacologic interventions, in the fetus.Am J Obstet Gynecol. 1991 Jun;164(6 Pt 1):1582-9; discussion 1589-91. doi: 10.1016/0002-9378(91)91440-8. Am J Obstet Gynecol. 1991. PMID: 1904682 Review.
-
Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons.J Neurosci Res. 2001 Nov 15;66(4):612-9. doi: 10.1002/jnr.10027. J Neurosci Res. 2001. PMID: 11746381
-
Hypoxia increases extracellular concentrations of excitatory and inhibitory neurotransmitters in subsequently induced seizure: in vivo microdialysis study in the rabbit.Exp Neurol. 1992 Aug;117(2):204-9. doi: 10.1016/0014-4886(92)90128-d. Exp Neurol. 1992. PMID: 1354167
Cited by
-
Lipid peroxidation and activity of some antioxidant enzymes in patients with glioblastoma and astrocytoma.J Neurooncol. 2007 Jan;81(1):21-6. doi: 10.1007/s11060-006-9202-5. Epub 2006 Jun 14. J Neurooncol. 2007. PMID: 16773213
-
Reactive oxidant species in piriform cortex extracellular fluid during seizures induced by systemic kainic acid in rats.J Mol Neurosci. 1999 Aug-Oct;13(1-2):63-8. doi: 10.1385/JMN:13:1-2:63. J Mol Neurosci. 1999. PMID: 10691293
-
The concentration of thiobarbituric acid reactive substances (TBARS) and paraoxonase activity in blood of patients with osteoarthrosis after endoprosthesis implantation.Med Sci Monit. 2011 Sep;17(9):CR498-504. doi: 10.12659/msm.881936. Med Sci Monit. 2011. PMID: 21873946 Free PMC article.
-
Redox changes in perfusates following intracerebral penetration of microdialysis probes.Neurochem Res. 1997 Jun;22(6):735-41. doi: 10.1023/a:1027362312381. Neurochem Res. 1997. PMID: 9178958
-
Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia.J Neurosci. 1997 Jun 1;17(11):4180-9. doi: 10.1523/JNEUROSCI.17-11-04180.1997. J Neurosci. 1997. PMID: 9151735 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Medical