Mechanical ventilation alters airway nucleotides and purinoceptors in lung and extrapulmonary organs
- PMID: 15388514
- DOI: 10.1165/rcmb.2004-0177OC
Mechanical ventilation alters airway nucleotides and purinoceptors in lung and extrapulmonary organs
Abstract
Extracellular nucleotides are stress-responsive ligands that mediate a variety of cellular processes via purinoceptors. We hypothesized that mechanical ventilation (MV) would alter the extracellular adenyl-nucleotide profile and purinoceptor expression in lung and extrapulmonary tissues. Twenty-eight rats were randomized to: (i) unventilated control animals; (ii) tidal volume (VT; 6 ml/kg); (iii) VT (6 ml/kg) and positive end-expiratory pressure (PEEP; 5 cm H20); (iv) VT (12 ml/kg); or (v) VT (12 ml/kg) and PEEP (5 cm H20). Bronchoalveolar lavage (BAL) was analyzed for adenyl-nucleotides. Pulmonary, hepatic, and renal tissues were assessed for P2Y4, P2Y6, P2X7, A3, and A2b receptor expression by real-time reverse transcriptase-polymerase chain reaction and Fas/Fas ligand mRNA was quantified in the lung. MV produced volume-dependent changes in BAL nucleotides; AMP and adenosine increased, whereas ATP and ADP proportions decreased. Large-volume MV increased A2b mRNA and decreased P2X7 in the lung; mRNA changes in lung Fas ligand paralleled P2X7. PEEP normalized BAL nucleotide profiles and A2b expression. Injurious MV reduced hepatic and renal P2X7 mRNA; PEEP normalized these levels in both tissues. Large-volume MV also decreased renal A2b mRNA. MV alters the BAL adenyl-nucleotide profile and purinoceptor patterns in lung, liver, and kidney. PEEP normalizes the BAL nucleotide profile and receptor patterns in lung and extrapulmonary tissues.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous