Requirement for membrane potential in active transport of glutamine by Escherichia coli
- PMID: 153897
- PMCID: PMC218439
- DOI: 10.1128/jb.137.1.221-225.1979
Requirement for membrane potential in active transport of glutamine by Escherichia coli
Abstract
The effect of reducing the membrane potential on glutamine transport in cells of Escherichia coli has been investigated. Addition of valinomycin to tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid-treated E. coli cells in the presence of 20 mM exogenous potassium reduced the membrane potential, as measured by the uptake of the lipophilic cation triphenylmethylphosphonium, and caused a complete inhibition of glutamine transport. Valinomycin plus potassium also caused a rapid decrease in the intracellular levels of ATP of normal E. coli cells, but had little if any effect on the ATP levels of two mutants of E. coli carrying lesions in the energy-transducing ATP complex (unc mutants). Yet both the membrane potential and the capacity to transport glutamine were depressed in the unc mutants by valinomycin and potassium. These findings are consistent with the hypothesis that both ATP and a membrane potential are essential to the active transport of glutamine by E. coli cells.
Similar articles
-
Valinomycin-induced uptake of potassium in membrane vesicles from Escherichia coli.Proc Natl Acad Sci U S A. 1971 Jul;68(7):1488-92. doi: 10.1073/pnas.68.7.1488. Proc Natl Acad Sci U S A. 1971. PMID: 4934520 Free PMC article.
-
Energy supply for active transport in anaerobically grown Escherichia coli.J Bacteriol. 1978 Dec;136(3):844-53. doi: 10.1128/jb.136.3.844-853.1978. J Bacteriol. 1978. PMID: 363696 Free PMC article.
-
A protonmotive force drives ATP synthesis in bacteria.Proc Natl Acad Sci U S A. 1974 Oct;71(10):3896-900. doi: 10.1073/pnas.71.10.3896. Proc Natl Acad Sci U S A. 1974. PMID: 4279406 Free PMC article.
-
Active transport of Ca2+ in bacteria: bioenergetics and function.Mol Cell Biochem. 1981 Apr 27;36(2):65-84. doi: 10.1007/BF02354906. Mol Cell Biochem. 1981. PMID: 6113540 Review.
-
Transport of H+, K+, Na+ and Ca++ in Streptococcus.Mol Cell Biochem. 1982 Apr 30;44(2):81-106. doi: 10.1007/BF00226893. Mol Cell Biochem. 1982. PMID: 6178954 Review. No abstract available.
Cited by
-
Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo.Proc Natl Acad Sci U S A. 1989 Nov;86(21):8257-61. doi: 10.1073/pnas.86.21.8257. Proc Natl Acad Sci U S A. 1989. PMID: 2682642 Free PMC article.
-
Escherichia coli K-12 tolZ mutants tolerant to colicins E2, E3, D, Ia, and Ib: defect in generation of the electrochemical proton gradient.J Bacteriol. 1984 Nov;160(2):733-9. doi: 10.1128/jb.160.2.733-739.1984. J Bacteriol. 1984. PMID: 6389496 Free PMC article.
-
Transport of amino acids in Lactobacillus casei by proton-motive-force-dependent and non-proton-motive-force-dependent mechanisms.J Bacteriol. 1989 Jan;171(1):280-4. doi: 10.1128/jb.171.1.280-284.1989. J Bacteriol. 1989. PMID: 2492498 Free PMC article.
-
Alteration of active transport after bacteriophage T5 infection.J Virol. 1984 Jun;50(3):671-7. doi: 10.1128/JVI.50.3.671-677.1984. J Virol. 1984. PMID: 6374164 Free PMC article.
-
Ammonium and methylammonium transport by the nitrogen-fixing bacterium Azotobacter vinelandii.J Bacteriol. 1981 Nov;148(2):435-42. doi: 10.1128/jb.148.2.435-442.1981. J Bacteriol. 1981. PMID: 7298576 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources