Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Mar;25(2):133-66.
doi: 10.1002/med.20019.

QT prolongation through hERG K(+) channel blockade: current knowledge and strategies for the early prediction during drug development

Affiliations
Review

QT prolongation through hERG K(+) channel blockade: current knowledge and strategies for the early prediction during drug development

Maurizio Recanatini et al. Med Res Rev. 2005 Mar.

Abstract

Prolongation of the QT interval of the electrocardiogram is a typical effect of Class III antiarrhythmic drugs, achieved through blockade of potassium channels. In the past decade, evidence has accrued that several classes of drugs used for non-cardiovascular indications may prolong the QT interval with the same mechanism (namely, human ether-a-go-go-related gene (hERG) K(+) channel blockade). The great interest in QT prolongation is because of several reasons. First, drug-induced QT prolongation increases the likelihood of a polymorphous ventricular arrhythmia (namely, torsades de pointes, TdP), which may cause syncope and degenerate into ventricular fibrillation and sudden death. Second, the fact that several classes of drugs, such as antihistamines, fluoroquinolones, macrolides, and neuroleptics may cause the long QT syndrome (LQTS) raises the question whether this is a class effect (e.g., shared by all agents of a given pharmacological class) or a specific effect of single agents within a class. There is now consensus that, in most cases, only a few agents within a therapeutic class share the ability to significantly affect hERG K(+) channels. These compounds should be identified as early as possible during drug development. Third, QT prolongation and interaction with hERG K(+) channels have become surrogate markers of cardiotoxicity and have received increasing regulatory attention. This review briefly outlines the mechanisms leading to QT prolongation and the different strategies that can be followed to predict this unwanted effect. In particular, it will focus on the approaches recently proposed for the in silico screening of new compounds.

PubMed Disclaimer

Publication types

LinkOut - more resources