Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;52(4):831-41.
doi: 10.1002/mrm.20233.

Optimal design of k-space trajectories using a multi-objective genetic algorithm

Affiliations
Free article

Optimal design of k-space trajectories using a multi-objective genetic algorithm

Brian M Dale et al. Magn Reson Med. 2004 Oct.
Free article

Abstract

Spiral, radial, and other nonrectilinear k-space trajectories are an area of active research in MRI due largely to their typically rapid acquisition times and benign artifact patterns. Trajectory design has commonly proceeded from a description of a simple shape to an investigation of its properties, because there is no general theory for the derivation of new trajectories with specific properties. Here such a generalized methodology is described. Specifically, a multi-objective genetic algorithm (GA) is used to design trajectories with beneficial flow and off-resonance properties. The algorithm converges to a well-defined optimal set with standard spiral trajectories on the rapid but low-quality end, and a new class of trajectories on the slower but high-quality end. The new trajectories all begin with nonzero gradient amplitude at the k-space origin, and curve gently outward relative to standard spirals. Improvements predicted in simulated imaging experiments were found to correlate well with improvements in actual experimental measures of image quality. The impact of deviations from the desired k-space trajectory is described, as is the impact of using different phantoms.

PubMed Disclaimer

Publication types

LinkOut - more resources