Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan 1;49(1):143-52.
doi: 10.1002/glia.20107.

Role of Na+-H+ and Na+-Ca2+ exchange in hypoxia-related acute astrocyte death

Affiliations

Role of Na+-H+ and Na+-Ca2+ exchange in hypoxia-related acute astrocyte death

Alexander Bondarenko et al. Glia. .

Abstract

Cultured astrocytes do not succumb to hypoxia/zero glucose for up to 24 h, yet astrocyte death following injury can occur within 1 h. It was previously demonstrated that astrocyte loss can occur quickly when the gaseous and interstitial ionic changes of transient brain ischemia are simulated: After a 20-40-min exposure to hypoxic, acidic, ion-shifted Ringer (HAIR), most cells died within 30 min after return to normal saline (i.e., "reperfusion"). Astrocyte death required external Ca2+ and was blocked by KB-R7943, an inhibitor of reversed Na+-Ca2+ exchange, suggesting that injury was triggered by a rise in [Ca2+]i. In the present study, we confirmed the elevation of [Ca2+]i during reperfusion and studied the role of Na+-Ca2+ and Na+-H+ exchange in this process. Upon reperfusion, elevation of [Ca2+]i was detectable by Fura-2 and was blocked by KB-R7943. The low-affinity Ca2+ indicator Fura-FF indicated a mean [Ca2+]i rise to 4.8+/-0.4 microM. Loading astrocytes with Fura-2 provided significant protection from injury, presumably due to the high affinity of the dye for Ca2+. Injury was prevented by the Na+-H+ exchange inhibitors ethyl isopropyl amiloride or HOE-694, and the rise of [Ca2+]i at the onset of reperfusion was blocked by HOE-694. Acidic reperfusion media was also protective. These data are consistent with Na+ loading via Na+-H+ exchange, fostering reversal of Na+-Ca2+ exchange and cytotoxic elevation of [Ca2+]i. The results indicate that mechanisms involved in pH regulation may play a role in the fate of astrocytes following acute CNS injuries.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources