Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb;262(2 Pt 1):C422-6.
doi: 10.1152/ajpcell.1992.262.2.C422.

Excitation-contraction coupling in pigs heterozygous for malignant hyperthermia

Affiliations

Excitation-contraction coupling in pigs heterozygous for malignant hyperthermia

E M Gallant et al. Am J Physiol. 1992 Feb.

Abstract

A defect in the skeletal muscle sarcoplasmic reticulum (SR) calcium release channel of malignant hyperthermia-susceptible (MHS) pigs greatly enhances SR calcium release in pigs homozygous for the malignant hyperthermia (MH) gene. In pigs heterozygous at this locus, rates of calcium release from isolated SR stimulated by Ca2+, ATP, or caffeine are intermediate to those of both MHS and normal SR [Mickelson et al. Am. J. Physiol. 257 (Cell Physiol. 26): C787-C794, 1989]. In this study bundles of intact muscle cells dissected from pigs of various genotypes were used to examine the effects of the MH gene on contractile responses to caffeine (direct stimulation of the SR) or to surface membrane (sarcolemma) depolarization (i.e., stimulation by way of the steps in excitation-contraction coupling). The caffeine threshold for contractures in the heterozygous muscles (5 mM) was intermediate to both types of homozygous muscles (2 mM for MHS and 10 mM for normal) as is the case with direct stimulation of calcium release from SR vesicles [Mickelson et al. Am. J. Physiol. 257 (Cell Physiol. 26): C787-C794, 1989]. Sarcolemmal depolarization was elicited by electrical stimuli or elevated extracellular potassium. Control twitch tension for MHS and heterozygous muscles did not differ and was significantly greater in both than in homozygous normal muscles. Potassium-induced contractures were significantly larger in MHS and heterozygous than in normal muscles. Thus, in heterozygous muscles, force production via sarcolemmal depolarization (twitches and potassium contractures) was enhanced as much as in homozygous MHS muscles. This could be the result of feedback from abnormal SR calcium channels producing altered (enhanced) transverse tubule to SR signal transduction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources