Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb;262(2 Pt 1):C517-26.
doi: 10.1152/ajpcell.1992.262.2.C517.

Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption

Affiliations

Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption

J J Feher et al. Am J Physiol. 1992 Feb.

Abstract

Computer simulations of transcellular Ca2+ transport in enterocytes were carried out using the simulation program SPICE. The program incorporated a negative-feedback entry of Ca2+ at the brush-border membrane that was characterized by an inhibitor constant of 0.5 microM cytosolic Ca2+ concentration ([Ca2+]). The basolateral Ca(2+)-ATPase was simulated by a four-step mechanism that resulted in Michaelis-Menten kinetics with a Michaelis constant of 0.24 microM [Ca2+]. The cytosolic diffusion of Ca2+ was simulated by dividing the cytosol into 10 slabs of equal width. Ca2+ binding to calbindin-D9K was simulated in each slab, and diffusion of free Ca2+, free calbindin, and Ca(2+)-laden calbindin was simulated between each slab. The cytosolic [Ca2+] of the simulated cells was regulated within the physiological range. Calbindin-D9K reduced the cytosolic [Ca2+] gradient, increased Ca2+ entry into the cell by removing the negative-feedback inhibition of Ca2+ entry, increased cytosolic Ca2+ flow, and increased the efflux of Ca2+ across the basolateral membrane by increasing the free [Ca2+] immediately adjacent to the pump. The enhancement of transcellular Ca2+ transport was nearly linearly dependent on calbindin-D9K concentration. The values of the dissociation constant (Kd) for calbindin-D9K were previously obtained experimentally in the presence and absence of KCl. Calbindin with the Kd obtained in the presence of KCl enhanced the simulated Ca2+ transport more than with the Kd obtained in the absence of KCl. This result suggests that the physiological Kd of calbindin is optimal for the enhancement of transcellular Ca2+ transport. The simulated Ca2+ flow was less than that predicted from the "near-equilibrium" analytic solution of the reaction-diffusion problem.

PubMed Disclaimer

LinkOut - more resources