Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch
- PMID: 1539992
- PMCID: PMC195171
- DOI: 10.1128/aem.58.1.48-54.1992
Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch
Abstract
The degradation and utilization of starch by three amylolytic and one nonamylolytic species of ruminal bacteria were studied. Pure cultures of Streptococcus bovis JB1, Butyrivibrio fibrisolvens 49, and Bacteroides ruminicola D31d rapidly hydrolyzed starch and maltooligosaccharides accumulated. The major starch hydrolytic products detected in S. bovis cultures were glucose, maltose, maltotriose, and maltotetraose. In addition to these oligosaccharides, B. fibrisolvens cultures produced maltopentaose. The products of starch hydrolysis by B. ruminicola were even more complex, yielding glucose through maltotetraose, maltohexaose, and maltoheptaose but little maltopentaose. Selenomonas ruminantium HD4 grew poorly on starch, digested only a small portion of the available substrate, and generated no detectable oligosaccharides as a result of cultivation in starch containing medium. S. ruminantium was able to grow on a mixture of maltooligosaccharides and utilize those of lower degree (less than 10) of polymerization. A coculture system containing S. ruminantium as a dextrin-utilizing species and each of the three amylolytic bacteria was developed to test whether the products of starch hydrolysis were available for crossfeeding to another ruminal bacterium. Cocultures of S. ruminantium and S. bovis contained large numbers of S. bovis but relatively few S. ruminantium and exhibited little change in the pattern of maltooligosaccharides observed for pure cultures of S. bovis. In contrast, S. ruminantium was able to compete with B. fibrisolvens and B. ruminicola for these growth substrates. When grown with B. fibrisolvens, S. ruminantium grew to high numbers and maltooligosaccharides accumulated to a much lesser degree than in cultures of B. fibrisolvens alone. S. ruminantium-B. ruminicola cultures contained large numbers of both species, and maltooligosaccharides never accumulated in these cocultures.(ABSTRACT TRUNCATED AT 250 WORDS)
Similar articles
-
Amylolytic activity of selected species of ruminal bacteria.Appl Environ Microbiol. 1988 Mar;54(3):772-6. doi: 10.1128/aem.54.3.772-776.1988. Appl Environ Microbiol. 1988. PMID: 2454075 Free PMC article.
-
Degradation and utilization of xylan by the ruminal bacteria Butyrivibrio fibrisolvens and Selenomonas ruminantium.Appl Environ Microbiol. 1995 Dec;61(12):4396-402. doi: 10.1128/aem.61.12.4396-4402.1995. Appl Environ Microbiol. 1995. PMID: 8534103 Free PMC article.
-
Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria.Appl Environ Microbiol. 1987 Dec;53(12):2849-53. doi: 10.1128/aem.53.12.2849-2853.1987. Appl Environ Microbiol. 1987. PMID: 3124741 Free PMC article.
-
Manipulation of ruminal fermentation with organic acids: a review.J Anim Sci. 1998 Dec;76(12):3123-32. doi: 10.2527/1998.76123123x. J Anim Sci. 1998. PMID: 9928618 Review.
-
Strategies that ruminal bacteria use to handle excess carbohydrate.J Anim Sci. 1998 Jul;76(7):1955-63. doi: 10.2527/1998.7671955x. J Anim Sci. 1998. PMID: 9690652 Review.
Cited by
-
Dietary supplements during the cold season increase rumen microbial abundance and improve rumen epithelium development in Tibetan sheep.J Anim Sci. 2018 Feb 15;96(1):293-305. doi: 10.1093/jas/skx032. J Anim Sci. 2018. PMID: 29385456 Free PMC article. Clinical Trial.
-
Bacterial community composition and fermentation patterns in the rumen of sika deer (Cervus nippon) fed three different diets.Microb Ecol. 2015 Feb;69(2):307-18. doi: 10.1007/s00248-014-0497-z. Epub 2014 Sep 25. Microb Ecol. 2015. PMID: 25252928
-
Maximizing efficiency of rumen microbial protein production.Front Microbiol. 2015 May 15;6:465. doi: 10.3389/fmicb.2015.00465. eCollection 2015. Front Microbiol. 2015. PMID: 26029197 Free PMC article. Review.
-
A LacI-family regulator activates maltodextrin metabolism of Enterococcus faecium.PLoS One. 2013 Aug 7;8(8):e72285. doi: 10.1371/journal.pone.0072285. eCollection 2013. PLoS One. 2013. PMID: 23951303 Free PMC article.
-
Indole-3-acetic acid enhances ruminal microbiota for aflatoxin B1 removal in vitro fermentation.Front Vet Sci. 2024 Dec 20;11:1450241. doi: 10.3389/fvets.2024.1450241. eCollection 2024. Front Vet Sci. 2024. PMID: 39758608 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources