Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Mar 24;299(1):28-32.
doi: 10.1016/0014-5793(92)80092-u.

Studies on the reaction coordinates of the water oxidase in PS II membrane fragments from spinach

Affiliations
Free article

Studies on the reaction coordinates of the water oxidase in PS II membrane fragments from spinach

G Renger et al. FEBS Lett. .
Free article

Abstract

The temperature dependence of the rate constants of the univalent redox steps YzoxSi----YzSi + 1 (i = 0,1,2) and YzoxS3----(YzS4)----YzSo + O2 in the water oxidase was investigated by measuring time resolved absorption changes at 355 nm induced by a laser flash train in dark adapted PS II membrane fragments from spinach. Activation energies of 5.0, 12.0 and 36.0 kJ/mol were obtained for the reactions YzoxSi----YzSi + 1 with i = 0,1 and 2, respectively. The reaction YzoxS3----(YzS4)----YzS0 + O2 exhibits a temperature dependence with a characteristic break point at 279 K with activation energies of 20 kJ/mol (T greater than 279 K) and 46 kJ/mol (T less than 279 K). Evaluation of the data within the framework of the classical Marcus theory of nonadiabatic electron transfer [(1985) Biochim. Biophys. Acta 811, 265-322] leads to the conclusion that the S2 oxidation to S3 is coupled with significant structural changes. Furthermore, the water oxidase in S3 is inferred to attain two different conformational states with populations that markedly change at a characteristic transition temperature.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources