Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992 Mar;6(6):2338-43.
doi: 10.1096/fasebj.6.6.1544543.

Radiation burdens for humans on prolonged exomagnetospheric voyages

Affiliations
Review

Radiation burdens for humans on prolonged exomagnetospheric voyages

F D Moore. FASEB J. 1992 Mar.

Abstract

The severity of radiation exposure for astronauts outside the magnetosphere poses a critical unanswered question bearing on the use of manned vehicles in extended exploration of the solar system (moon, Mars). Such prolonged exomagnetospheric voyages (1-3 years) enter a radiologic environment more severe than that of low earth orbit, an annual dose equivalent in the range of 0.3-0.5 Sv (30-50 rem), and a lifetime excess cancer fatality risk of 3-5% due to low linear-energy-transfer components of galactic cosmic radiation alone. To this calculus must be added estimates for high-atomic-number, high-energy particles, the probability of solar particle events, and the limited effectiveness of shielding. For a 3-year Mars voyage these could elevate the dose equivalent to 1.5-2.25 Sv (150-225 rem) total (0.5-0.75 Sv [50-75 rem] annual) and risks to 5-9% excess cancer fatality. Both the mission (civilian scientific research) and the alternatives (unmanned robotic devices) enter the policy decision here. This paper presents a brief review of pertinent physical and biological data and of research urgently needed before reaching a decision on this question.

PubMed Disclaimer

Comment in

Similar articles

Cited by

LinkOut - more resources