Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug;58(8):1639-54.
doi: 10.1111/j.0014-3820.2004.tb00450.x.

Evolution and stability of the G-matrix on a landscape with a moving optimum

Affiliations
Comparative Study

Evolution and stability of the G-matrix on a landscape with a moving optimum

Adam G Jones et al. Evolution. 2004 Aug.

Abstract

In quantitative genetics, the genetic architecture of traits, described in terms of variances and covariances, plays a major role in determining the trajectory of evolutionary change. Hence, the genetic variance-covariance matrix (G-matrix) is a critical component of modern quantitative genetics theory. Considerable debate has surrounded the issue of G-matrix constancy because unstable G-matrices provide major difficulties for evolutionary inference. Empirical studies and analytical theory have not resolved the debate. Here we present the results of stochastic models of G-matrix evolution in a population responding to an adaptive landscape with an optimum that moves at a constant rate. This study builds on the previous results of stochastic simulations of G-matrix stability under stabilizing selection arising from a stationary optimum. The addition of a moving optimum leads to several important new insights. First, evolution along genetic lines of least resistance increases stability of the orientation of the G-matrix relative to stabilizing selection alone. Evolution across genetic lines of least resistance decreases G-matrix stability. Second, evolution in response to a continuously changing optimum can produce persistent maladaptation for a correlated trait, even if its optimum does not change. Third, the retrospective analysis of selection performs very well when the mean G-matrix (G) is known with certainty, indicating that covariance between G and the directional selection gradient beta is usually small enough in magnitude that it introduces only a small bias in estimates of the net selection gradient. Our results also show, however, that the contemporary G-matrix only serves as a rough guide to G. The most promising approach for the estimation of G is probably through comparative phylogenetic analysis. Overall, our results show that directional selection actually can increase stability of the G-matrix and that retrospective analysis of selection is inherently feasible. One major remaining challenge is to gain a sufficient understanding of the G-matrix to allow the confident estimation of G.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources