Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug;32(8):1058-66.
doi: 10.1114/b:abme.0000036642.21895.3f.

Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves

Affiliations
Comparative Study

Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves

Wei Yin et al. Ann Biomed Eng. 2004 Aug.

Abstract

A study was conducted to measure in vitro the procoagulant properties of platelets induced by flow through Carbomedics bileaflet and Bjork-Shiley monoleaflet mechanical heart valves (MHVs). Valves were mounted in a left ventricular assist device, and platelets were circulated through them under pulsatile flow. Platelet activation states (PAS) were measured during circulation using a modified prothrombinase method. Computational fluid dynamics (CFD) simulations of turbulent, transient, and non-Newtonian blood flow patterns generated by the two valve designs were done using the Wilcox k - w turbulence model, and platelet shear-stress histories (the integral of shear-stress exposure with respect to time) through the two MHVs were calculated. PAS measurements indicated that the bileaflet MHV activated platelets at a rate more than twice that observed with the monoleaflet MHV. Turbulent flow patterns were evident in CFD simulations for both valves, and corroborated the PAS observations, showing that, for particles close to the leaflet(s), shear-stress exposure in the bileaflet MHV can be more than four times that in the monoleaflet valve.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources