Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Aug;53(8):873-81.

[Volatile anesthetics and synaptic transmission in the central nervous system]

[Article in Japanese]
Affiliations
  • PMID: 15446675
Review

[Volatile anesthetics and synaptic transmission in the central nervous system]

[Article in Japanese]
Koichi Nishikawa. Masui. 2004 Aug.

Abstract

Long-lasting changes in the synaptic efficacy of signaling between neurons in the central nervous system are thought to be involved in memory consolidation and recall. Such long-lasting changes were first demonstrated by Bliss et al. in 1973. They found that high frequency stimulation to the hippocampus produced an increase in the amplitude of excitatory postsynaptic potentials, which lasted at least for hours. This phenomenon is known as long-term potentiation (LTP). LTP occurs in many synaptic pathways, and some forms of LTP appear to be triggered by the influx of calcium through NMDA receptors. General anesthetics are thought to affect LTP, since clinically relevant concentrations of volatile anesthetics seem to modify ligand-gated ion channels such as glutamate receptors and GABA(A) receptors. Previous studies have shown that volatile anesthetics such as isoflurane and sevoflurane enhance GABA(A) receptor-mediated inhibition, suggesting that general anesthesia is produced, at least in part, by enhancing neural inhibition mediated by GABA(A) receptors. This review focuses on recent research concerning the effects of volatile anesthetics on synaptic transmission, synaptic plasticity, and clinically important diseases imparing synaptic transmission in the central nervous system.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources