Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct 4;43(20):6266-73.
doi: 10.1021/ic0496018.

pH-dependent isolations and spectroscopic, structural, and thermal studies of titanium citrate complexes

Affiliations

pH-dependent isolations and spectroscopic, structural, and thermal studies of titanium citrate complexes

Yuan-Fu Deng et al. Inorg Chem. .

Abstract

Titanium(IV) citrate complexes (NH(4))(2)[Ti(H(2)cit)(3)].3H(2)O (1), (NH(4))(5)[Fe(H(2)O)(6)][Ti(H(2)cit)(3)(Hcit)(3)Ti].3H(2)O (2), Ba(2)[Ti(H(2)cit)(Hcit)(2)].8H(2)O (3), and Ba(3)(NH(4))(7)[Ti(cit)(3)H(3)(cit)(3)Ti].15H(2)O (4) (H(4)cit = citric acid) were isolated in pure form from the solutions of titanium(IV) citrate with various countercations. The isolated complexes were characterized by elemental analyses, IR spectra, and (1)H NMR and (13)C NMR spectra. The formation of titanium(IV) citrate complexes depends mainly on the pH of the solutions, that is, pH 1.0-2.8 for the formation of ammonium titanium(IV) citrate 1, pH 2.5-3.5 for ammonium iron titanium(IV) citrate 2, pH 2.8-4.0 for dibarium titanium(IV) citrate 3, and pH 5.0-6.0 for ammonium barium titanium(IV) citrate 4. X-ray structural analyses revealed that complexes 2-4 featured three different protonated forms of bidentate citrate anions that chelate to the titanium(IV) atom through their negatively charged alpha-alkoxyl and alpha-carboxyl oxygen atoms. This is consistent with the large downfield shifts of the (13)C NMR spectra for the carbon atoms bearing the alpha-alkoxyl and alpha-carboxyl groups. The typical coordination modes of the barium atoms in complexes 3 and 4 are six-coordinated, with three alpha-alkoxyl groups and three beta-carboxyl groups of citrate ions. The strong hydrogen bonding between the beta-carboxylic acid and the beta-carboxyl groups [2.634(8) A for complex 2, 2.464(7) A for complex 3, and 2.467(7) A for complex 4] may be the key factor for the stabilization of the citrate complexes. The decomposition of complex 3 results in the formation of a pure dibarium titanate phase and 4 for the mixed phases of dibarium titanate and barium titanate at 1000 degrees C.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources