Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;13(10):613-20.
doi: 10.1111/j.0906-6705.2004.00198.x.

In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer

Affiliations

In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer

Hiroshi Nagai et al. Exp Dermatol. 2004 Oct.

Abstract

CD4(+)CD25(+) T cells are an important population that plays a crucial role in the maintenance of peripheral self-tolerance. Recently, it was shown that the elimination of these cells by in vivo administration of anti-CD25 monoclonal antibody (mAb) caused the regression of highly immunogenic tumors in syngeneic mice. In this study, we examined whether B16F10 melanoma cells regressed with the elimination of CD25(+) regulatory T cells. We found the melanoma cells were not affected at all by in vivo anti-CD25 mAb administration alone but tumor rejection resulted in all mice when the administration was combined with IL-12 gene transfer to tumor cells. In vivo, depletion of natural killer (NK) cells or CD8(+) T cells cancelled the tumor rejection. NK-cell depletion allowed IL-12-transfected B16F10 melanoma (B16/IL-12) to grow from an early stage and resulted in a more rapid tumor growth of B16/IL-12 than that in mice without administration of anti-CD25 mAb. On the other hand, CD8(+) T-cell depletion did not affect the tumor growth in the early phase but allowed B16/IL-12 to grow in rather a late phase and resulted in almost the same degree of tumor growth as in mice without administration of anti-CD25 mAb. In a previous study, we showed that the elimination of CD4(+) T cells enhanced the antitumor effect of B16/IL-12 and induced vitiligo-like coat color alteration. Therefore, we also examined the frequency of the change to a vitiligo-like coat color in mice showing tumor rejection caused by CD25(+) T-cell elimination to compare with the mechanism enhancing the antitumor effects by cell elimination. The elimination of CD25(+) T cells did not induce vitiligo-like coat color changes, though that of CD4(+) T cells induced the change in 60% of mice. Furthermore, we confirmed that elimination of CD25(+) T cells did not affect the T-helper (Th) 1/Th2 cytokine profile, while that of CD4(+)T cells abrogated the Th2 cytokines (IL-4 and IL-10) and resulted in a Th1-dominant cytokine profile in the tumor-draining lymph nodes (TDLNs) of B16/IL-12-bearing mice. These results indicate that in vivo depletion of CD25(+) regulatory T cells is a potent useful adjuvant in immunotherapy of B16F10 melanoma, when combined with IL-12 gene transfer and that the enhancement of the antitumor effect by CD25(+) T-cell depletion is mediated through CD8(+) T cells and may differ from the enhancing mechanism caused by CD4(+) T-cell depletion.

PubMed Disclaimer

Similar articles

Cited by

Publication types