Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 24:5:24.
doi: 10.1186/1471-2350-5-24.

Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan

Affiliations

Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan

Zubair M Ahmed et al. BMC Med Genet. .

Abstract

Background: Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10). TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3.

Methods: We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3.

Results: We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues.

Conclusion: Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449) of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein.

PubMed Disclaimer

Figures

Figure 2
Figure 2
Pedigrees of Pakistani families. Four families with nonsyndromic recessive deafness from Pakistan.
Figure 1
Figure 1
Pedigree of Newfoundland family. There are ten hearing impaired individuals in a six generation extended family structure. Drawn below the enrolled subjects is a haplotype for STR markers around the DFNB8/B10 locus on chromosome 21. The carrier status of each person for the mutant alleles of TMPRSS3 found in this family is shown. "C" represents 207delC, while "T" stands for IVS8+8insT. Individuals V:17 and V:20 are compound heterozygotes.
Figure 3
Figure 3
Mutational spectrum, structure and expression of TMPRSS3 isoforms. (A) Coding and non-coding exons of all the known isoforms of TMPRSS3 are shown with black and gray rectangles, respectively. The newly identified isoform e has translation initiation codon (arrow) in exon 1, while the termination codon in exon 13 is marked with an asterisk. Shown also are predicted protein motifs encoded by the 3192 bp long mRNA of isoform e. All the known mutant alleles of TMPRSS3 causing hearing loss are shown above the protein motifs. Modified and updated from Ben-Yosef et al. 2001 [5] (B) Nucleotide sequence of the cDNA encoding the amino terminus of TMPRSS3e and its deduced amino acid sequence. The underlined nucleotide sequence represents the region predicted by SMART to encode a signal peptide. The last ATG shown is the reported translation initiation site for isoform a [4]. (C) RT-PCR specific to the TMPRSS3e transcript was performed on cDNA from seven human tissues, which include retina, lung, liver, heart, pancreas, placenta and kidney as indicated. All tissues, except heart, demonstrated expression of TMPRSS3e. G3PDH was used as a positive control.

Similar articles

Cited by

References

    1. Friedman TB, Griffith AJ. Human nonsyndromic sensorineural deafness. Annu Rev Genomics Hum Genet. 2003;4:341–402. doi: 10.1146/annurev.genom.4.070802.110347. - DOI - PubMed
    1. Bonne-Tamir B, DeStefano AL, Briggs CE, Adair R, Franklyn B, Weiss S, Korostishevsky M, Frydman M, Baldwin CT, Farrer LA. Linkage of congenital recessive deafness (gene DFNB10) to chromosome 21q22.3. Am J Hum Genet. 1996;58:1254–1259. - PMC - PubMed
    1. Veske A, Oehlmann R, Younus F, Mohyuddin A, Muller-Myhsok B, Mehdi SQ, Gal A. Autosomal recessive non-syndromic deafness locus (DFNB8) maps on chromosome 21q22 in a large consanguineous kindred from Pakistan. Hum Mol Genet. 1996;5:165–168. doi: 10.1093/hmg/5.1.165. - DOI - PubMed
    1. Scott HS, Kudoh J, Wattenhofer M, Shibuya K, Berry A, Chrast R, Guipponi M, Wang J, Kawasaki K, Asakawa S, Minoshima S, Younus F, Mehdi SQ, Radhakrishna U, Papasavvas MP, Gehrig C, Rossier C, Korostishevsky M, Gal A, Shimizu N, Bonne-Tamir B, Antonarakis SE. Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat Genet. 2001;27:59–63. - PubMed
    1. Ben-Yosef T, Wattenhofer M, Riazuddin S, Ahmed ZM, Scott HS, Kudoh J, Shibuya K, Antonarakis SE, Bonne-Tamir B, Radhakrishna U, Naz S, Ahmed Z, Pandya A, Nance WE, Wilcox ER, Friedman TB, Morell RJ. Novel mutations of TMPRSS3 in four DFNB8/B10 families segregating congenital autosomal recessive deafness. J Med Genet. 2001;38:396–400. doi: 10.1136/jmg.38.6.396. - DOI - PMC - PubMed

Publication types

MeSH terms

Associated data