Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 15;10(18 Pt 1):6143-51.
doi: 10.1158/1078-0432.CCR-04-0429.

Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma

Affiliations

Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma

Nikita A Makretsov et al. Clin Cancer Res. .

Abstract

Prognostically relevant cluster groups, based on gene expression profiles, have been recently identified for breast cancers, lung cancers, and lymphoma. Our aim was to determine whether hierarchical clustering analysis of multiple immunomarkers (protein expression profiles) improves prognostication in patients with invasive breast cancer. A cohort of 438 sequential cases of invasive breast cancer with median follow-up of 15.4 years was selected for tissue microarray construction. A total of 31 biomarkers were tested by immunohistochemistry on these tissue arrays. The prognostic significance of individual markers was assessed by using Kaplan-Meier survival estimates and log-rank tests. Seventeen of 31 markers showed prognostic significance in univariate analysis (P < or = 0.05) and 4 markers showed a trend toward significance (P < or = 0.2). Unsupervised hierarchical clustering analysis was done by using these 21 immunomarkers, and this resulted in identification of three cluster groups with significant differences in clinical outcome. chi2 analysis showed that expression of 11 markers significantly correlated with membership in one of the three cluster groups. Unsupervised hierarchical clustering analysis with this set of 11 markers reproduced the same three prognostically significant cluster groups identified by using the larger set of markers. These cluster groups were of prognostic significance independent of lymph node metastasis, tumor size, and tumor grade in multivariate analysis (P=0.0001). The cluster groups were as powerful a prognostic indicator as lymph node status. This work demonstrates that hierarchical clustering of immunostaining data by using multiple markers can group breast cancers into classes with clinical relevance and is superior to the use of individual prognostic markers.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources