Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;66(6):1719-26.
doi: 10.1124/mol.104.003806. Epub 2004 Sep 24.

Transcriptional regulation of the human mu-opioid receptor gene by interleukin-6

Affiliations

Transcriptional regulation of the human mu-opioid receptor gene by interleukin-6

Christine Börner et al. Mol Pharmacol. 2004 Dec.

Abstract

Inflammatory pain is counteracted by a number of physiological processes. For example, opioid receptors, which are present on peripheral terminals of sensory neurons, are activated by endogenous opioids, which are released from immune cells migrating to the inflamed tissue. Earlier data demonstrated that interleukin-6 contributes to such inflammation-induced analgesia. In this report, we demonstrated that interleukin-6 strongly induces mu-opioid receptor mRNA in the human neuroblastoma cell line SH SY5Y, whereas delta-opioid receptor mRNA levels are not influenced. The mRNA increase in these cells is followed by an increase in mu-opioid receptor-specific binding. Using transcription factor decoy oligonucleotides, direct evidence was provided that the up-regulation of mu-opioid receptor mRNA in intact cells is dependent on the transcription factors signal transducers and activators of transcription 1 (STAT1) and STAT3, whereas other transcription factors, such as activator protein-1, nuclear factor (NF)-kappaB, or NF-interleukin-6 are not involved. STAT1 and STAT3 bound to a site located at nucleotide -1583 on the promoter of the human mu-opioid receptor gene, as shown by transient transfection experiments, electrophoretic mobility shift assays, and transcription factor decoy oligonucleotides. A mutation analysis of the 5'-TTCATGGAA-3' STAT1/3 element (palindrome underlined) was performed to determine nucleotide residues that are necessary for the binding of STAT1 and STAT3. It suggested that only the palindromic half sides and the two adjacent central nucleotides are required. Neither mutation of the nucleotides outside the palindrome nor mutation of the central nucleotide affected STAT1/3 binding.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources