Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan 8;315(2):244-53.
doi: 10.1002/cne.903150210.

Morphine or U-50,488 suppresses Fos protein-like immunoreactivity in the spinal cord and nucleus tractus solitarii evoked by a noxious visceral stimulus in the rat

Affiliations

Morphine or U-50,488 suppresses Fos protein-like immunoreactivity in the spinal cord and nucleus tractus solitarii evoked by a noxious visceral stimulus in the rat

D L Hammond et al. J Comp Neurol. .

Abstract

Immunohistochemical visualization of Fos protein, the nuclear phosphoprotein product of the early-immediate gene c-fos, permits identification of populations of neurons that are activated in response to a variety of stimuli. This study examined the distribution of Fos-like immunoreactive (FLI) neurons in the spinal cord and the nucleus tractus solitarii (NTS) of the caudal medulla evoked by a noxious visceral stimulus in the unanesthetized rat. It also compared the inhibition of pain behavior and Fos expression by a mu-selective opioid agonist, morphine, and a kappa-selective opioid agonist, U-50,488. Intraperitoneal injection of 3.5% acetic acid in the unanesthetized rat evoked the expression of FLI in a discrete population of spinal cord neurons, the distribution of which closely mirrored the spinal terminations of visceral primary afferents. Specifically, FLI neurons were concentrated in laminae I, IIo, V, VII, and X. Large numbers of Fos-immunoreactive neurons were also present in the NTS of the caudal medulla, most likely as a result of spinosolitary tract and vaginal afferent input. The number of labeled neurons in both the spinal cord and the NTS was significantly correlated with the number of abdominal stretches, a pain behavior measure. Both morphine (1-10 mg/kg s.c.) and U-50,488 (3-30 mg/kg s.c.) produced a dose-dependent inhibition of the pain behavior in these animals and a dose-dependent suppression of the number of FLI neurons in both the spinal cord and in the NTS; complete suppression of FLI neurons was, however, not necessary for the production of antinociception. Furthermore, although equianalgesic doses of morphine and U-50,488 reduced the number of labelled neurons in the spinal cord to a comparable extent, morphine reduced the number of immunoreactive neurons in the NTS to a greater extent than did U-50,488. These results suggest that morphine and U-50,488 have comparable effects on the transmission of visceral nociceptive messages by spinal neurons, but differentially affect the autonomic response to noxious visceral stimuli.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources