Asymmetry in membrane responses to electric shocks: insights from bidomain simulations
- PMID: 15454429
- PMCID: PMC1304652
- DOI: 10.1529/biophysj.104.043091
Asymmetry in membrane responses to electric shocks: insights from bidomain simulations
Abstract
Models of myocardial membrane dynamics have not been able to reproduce the experimentally observed negative bias in the asymmetry of transmembrane potential changes (DeltaVm) induced by strong electric shocks delivered during the action potential plateau. The goal of this study is to determine what membrane model modifications can bridge this gap between simulation and experiment. We conducted simulations of shocks in bidomain fibers and sheets with membrane dynamics represented by the LRd'2000 model. We found that in the fiber, the negative bias in DeltaVm asymmetry could not be reproduced by addition of electroporation only, but by further addition of hypothetical outward current, Ia, activated upon strong shock-induced depolarization. Furthermore, the experimentally observed rectangularly shaped positive DeltaVm, negative-to-positive DeltaVm ratio (asymmetry ratio) = approximately 2, electroporation occurring at the anode only, and the increase in positive DeltaVm caused by L-type Ca2+-channel blockade were reproduced in the strand only if Ia was assumed to be a part of K+ flow through the L-type Ca2+-channel. In the sheet, Ia not only contributed to the negative bias in DeltaVm asymmetry at sites polarized by physical and virtual electrodes, but also restricted positive DeltaVm. Inclusion of Ia and electroporation is thus the bridge between experiment and simulation.
Copyright 2004 Biophysical Society
Figures






Similar articles
-
Cell and tissue responses to electric shocks.Europace. 2005 Sep;7 Suppl 2:155-65. doi: 10.1016/j.eupc.2005.03.020. Europace. 2005. PMID: 16102513
-
Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.Circ Res. 2004 Feb 6;94(2):208-14. doi: 10.1161/01.RES.0000111526.69133.DE. Epub 2003 Dec 11. Circ Res. 2004. PMID: 14670844
-
Membrane time constant during internal defibrillation strength shocks in intact heart: effects of Na+ and Ca2+ channel blockers.J Cardiovasc Electrophysiol. 2009 Jan;20(1):85-92. doi: 10.1111/j.1540-8167.2008.01273.x. Epub 2008 Sep 3. J Cardiovasc Electrophysiol. 2009. PMID: 18775052 Free PMC article.
-
Review of mechanisms by which electrical stimulation alters the transmembrane potential.J Cardiovasc Electrophysiol. 1999 Feb;10(2):234-43. doi: 10.1111/j.1540-8167.1999.tb00666.x. J Cardiovasc Electrophysiol. 1999. PMID: 10090228 Review.
-
[Computer simulations of electrical activity of the heart].Usp Fiziol Nauk. 2010 Jul-Sep;41(3):44-63. Usp Fiziol Nauk. 2010. PMID: 20865937 Review. Russian.
Cited by
-
The role of mechanoelectric feedback in vulnerability to electric shock.Prog Biophys Mol Biol. 2008 Jun-Jul;97(2-3):461-78. doi: 10.1016/j.pbiomolbio.2008.02.020. Epub 2008 Feb 16. Prog Biophys Mol Biol. 2008. PMID: 18374394 Free PMC article.
-
Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions.Biophys J. 2008 Mar 1;94(5):1904-15. doi: 10.1529/biophysj.107.121343. Epub 2007 Nov 9. Biophys J. 2008. PMID: 17993491 Free PMC article.
-
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28. Physiol Rev. 2024. PMID: 38153307 Free PMC article. Review.
-
Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping.Biophys J. 2006 Apr 15;90(8):2938-45. doi: 10.1529/biophysj.105.076505. Epub 2006 Jan 27. Biophys J. 2006. PMID: 16443665 Free PMC article.
-
Mechanism of reentry induction by a 9-V battery in rabbit ventricles.Am J Physiol Heart Circ Physiol. 2014 Apr 1;306(7):H1041-53. doi: 10.1152/ajpheart.00591.2013. Epub 2014 Jan 24. Am J Physiol Heart Circ Physiol. 2014. PMID: 24464758 Free PMC article.
References
-
- Aguel, F., K. A. Debruin, W. Krassowska, and N. A. Trayanova. 1999. Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue. J. Cardiovasc. Electrophysiol. 10:701–714. - PubMed
-
- Al-Khadra, A., V. Nikolski, and I. R. Efimov. 2000. The role of electroporation in defibrillation. Circ. Res. 87:797–804. - PubMed
-
- Ashihara, T., T. Namba, T. Ikeda, M. Ito, K. Nakazawa, and N. Trayanova. 2004a. Mechanisms of myocardial capture and temporal excitable gap during spiral wave reentry in a bidomain model. Circulation. 109:920–925. - PubMed
-
- Ashihara, T., T. Namba, M. Ito, T. Ikeda, K. Nakazawa, and N. Trayanova. 2004b. Spiral wave control by a localized stimulus: a bidomain model study. J. Cardiovasc. Electrophysiol. 15:226–233. - PubMed
-
- Ashihara, T., T. Namba, T. Yao, T. Ozawa, A. Kawase, T. Ikeda, K. Nakazawa, and M. Ito. 2003. Vortex cordis as a mechanism of postshock activation: arrhythmia induction study using a bidomain model. J. Cardiovasc. Electrophysiol. 14:295–302. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous