Sexual dimorphism of rat liver nuclear proteins: regulatory role of growth hormone
- PMID: 15456855
- DOI: 10.1074/mcp.M400102-MCP200
Sexual dimorphism of rat liver nuclear proteins: regulatory role of growth hormone
Abstract
Many genes are expressed in mammalian liver in a sexually dimorphic manner. DNA microarray analysis has shown that growth hormone (GH) and its sex-dependent pattern of pituitary secretion play a major role in establishing the sexually dimorphic patterns of liver gene expression. However, GH may exert effects on protein post-translational modification and nuclear localization that are not reflected at the mRNA level. To investigate these potential effects of GH, we used two-dimensional gel electrophoresis followed by LC-MS/MS to: 1) identify rat liver nuclear proteins whose abundance or state of post-translational modification displays sex-dependent differences; and 2) determine the role of the plasma GH profile in establishing these differences. Nuclear extracts prepared from livers of individual male (n=9) and female (n=5) adult rats, and from males given GH by continuous infusion for 7 days to feminize liver gene expression (n=5 rats), were resolved by two-dimensional electrophoresis. Image analysis of SYPRO Ruby-stained gels revealed 165 sexually dimorphic protein spots that differ in normalized volume between male and female groups by >1.5-fold at p<0.05. Sixty of these proteins exhibited female-like changes in spot abundance following continuous GH treatment. Comparison of male and GH-treated male groups revealed 130 proteins that displayed >1.5-fold differences in abundance, with 60 of these GH-responsive spots being sexually dimorphic. Thus, GH plays an important role in establishing the sex-dependent differences in liver nuclear protein content. Twenty-eight of the sexually dimorphic and/or GH-regulated protein spots were identified by LC-MS/MS. Proteins identified include regucalcin, nuclear factor 45, and heterogeneous nuclear ribonucleoproteins A3, D-like, and K, in addition to proteins such as GST, normally associated with cytosolic extracts but also reported to be localized in the nucleus.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
