Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan;6(2):189-95.
doi: 10.1111/j.1365-2958.1992.tb02000.x.

The relationship between disulphide bond formation, processing and secretion of lipo-beta-lactamase in yeast

Affiliations

The relationship between disulphide bond formation, processing and secretion of lipo-beta-lactamase in yeast

O Shani et al. Mol Microbiol. 1992 Jan.

Abstract

The hybrid prokaryotic lipo-beta-lactamase mature and precursor proteins spontaneously form an intramolecular disulphide bond when oxidized in vitro. When expressed in Saccharomyces cerevisiae (in vivo) the lipo-beta-lactamase precursor is in a reduced form whereas the majority of the mature protein is oxidized. The results indicate that in yeast, the lipo-beta-lactamase precursor is first processed (the signal peptide is removed) and then oxidized to form a disulphide bond in the mature protein. Reduced-mature lipo-beta-lactamase was found to reach the yeast periplasm and the process depends on endoplasmic reticulum (ER) entry even though the protein is not oxidized. This result is remarkable since in eukaryotes, disulphide bond formation occurs in the ER. Oxidized mature lipo-beta-lactamase can also be released from the sphaeroplast into the yeast periplasm. Mutant lipo-beta-lactamase genes in which cysteine residue 131 was changed to either tyrosine or threonine, were efficiently processed and secreted in yeast, which is consistent with the finding that reduced-mature non-mutant lipo-beta-lactamase can be secreted. We discuss the possibility that the folding mechanism of lipo-beta-lactamase in vitro may be fundamentally different from the process in the eukaryotic system of S. cerevisiae.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources