Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Oct 12;20(21):9156-69.
doi: 10.1021/la049388s.

Subcritical failure of soft acrylic adhesives under tensile stress

Affiliations
Comparative Study

Subcritical failure of soft acrylic adhesives under tensile stress

A Lindner et al. Langmuir. .

Abstract

The mechanisms of failure over time of a series of model acrylic pressure-sensitive adhesives under a moderate level of stress has been investigated with a probe method. Two competing mechanisms of failure have been observed: a progressive nucleation of cavities under stress and the propagation of existing cavities at the interface between the probe and the adhesive layer. Homogeneous creep of the adhesive was never observed as the only failure mechanism. In situations where the resistance to crack propagation was good relative to the resistance to cavitation, extensive nucleation of cavities was observed until a material-dependent and stable value of stress was achieved. On the other hand in situations were the resistance to crack propagation was weak, propagation led invariably to a complete failure of the adhesive bond. In addition to the stress relaxation, the energy dissipation was studied allowing to distinguish the different adhesives even further. This allowed determination of the optimal amount of a comonomer (acrylic acid) that had to be added to improve the long-term resistance of the adhesives under study. Further more we investigate the compliance of the confined adhesive layers and compare the obtained results to predictions from theoretical models.

PubMed Disclaimer

Publication types

LinkOut - more resources