Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Nov 5;324(1):451-7.
doi: 10.1016/j.bbrc.2004.09.073.

Metabolism of vitamin D by human microsomal CYP2R1

Affiliations
Comparative Study

Metabolism of vitamin D by human microsomal CYP2R1

Raku Shinkyo et al. Biochem Biophys Res Commun. .

Abstract

The activation of vitamin D requires 25-hydroxylation in the liver and 1alpha-hydroxylation in the kidney. However, it remains unclear which enzyme is relevant to vitamin D 25-hydroxylation. Recently, human CYP2R1 has been reported to be a potential candidate for a hepatic vitamin D 25-hydroxylase. Thus, vitamin D metabolism by CYP2R1 was compared with human mitochondrial CYP27A1, which used to be considered a physiologically important vitamin D(3) 25-hydroxylase. A clear difference was observed between CYP2R1 and CYP27A1 in the metabolism of vitamin D(2). CYP2R1 hydroxylated vitamin D(2) at the C-25 position while CYP27A1 hydroxylated it at positions C-24 and C-27. The K(m) and k(cat) values for the CYP2R1-dependent 25-hydroxylation activity toward vitamin D(3) were 0.45microM and 0.97min(-1), respectively. The k(cat)/K(m) value of CYP2R1 was 26-fold higher than that of CYP27A1. These results strongly suggest that CYP2R1 plays a physiologically important role in the vitamin D 25-hydroxylation in humans.

PubMed Disclaimer

Publication types

MeSH terms