A dynamic supraclavicular field-matching technique for head-and-neck cancer patients treated with IMRT
- PMID: 15465215
- DOI: 10.1016/j.ijrobp.2004.06.213
A dynamic supraclavicular field-matching technique for head-and-neck cancer patients treated with IMRT
Abstract
Purpose: The conventional single-isocenter and half-beam (SIHB) technique for matching supraclavicular fields with head-and-neck (HN) intensity-modulated radiotherapy (IMRT) fields is subject to substantial dose inhomogeneities from imperfect accelerator jaw/MLC calibration. It also limits the isocenter location and restricts the useful field size for IMRT. We propose a dynamic field-matching technique to overcome these limitations.
Methods and materials: The proposed dynamic field-matching technique makes use of wedge junctions for the abutment of supraclavicular and HN IMRT fields. The supraclavicular field was shaped with a multileaf collimator (MLC), which was orientated such that the leaves traveled along the superoinferior direction. The leaves that defined the superior field border moved continuously during treatment from 1.5 cm below to 1.5 cm above the conventional match line to generate a 3-cm-wide wedge-shaped junction. The HN IMRT fields were optimized by taking into account the dose contribution from the supraclavicular field to the junction area, which generates a complementary wedge to produce a smooth junction in the abutment region. This technique was evaluated on a polystyrene phantom and 10 HN cancer patients. Treatment plans were generated for the phantom and the 10 patients. Dose profiles across the abutment region were measured in the phantom on films. For patient plans, dose profiles that passed through the center of the neck lymph nodes were calculated using the proposed technique and the SIHB technique, and dose uniformity in the abutment region was compared. Field mismatches of +/- 1 mm and +/- 2 mm because of imperfect jaw/MLC calibration were simulated, and the resulting dose inhomogeneities were studied for the two techniques with film measurements and patient plans. Three-dimensional volumetric doses were analyzed, and equivalent uniform doses (EUD) were computed. The effect of field mismatches on EUD was compared for the two match techniques.
Results: For a perfect jaw/MLC calibration, dose profiles for the 10 patients in the 3-cm match zone had an average inhomogeneity range of -1.6% to +1.6% using the dynamic-matching technique and -3.7% to +3.8% according to the SIHB technique. Measurements showed that dose inhomogeneities that resulted from 1-mm and 2-mm jaw/MLC calibration errors were reduced from as large as 27% and 45% with the SIHB technique to less than 2% and 5.7% with the dynamic technique, respectively. For -1-mm, -2-mm, +1-mm, and +2-mm jaw/MLC calibration errors, respectively, treatment plans for the 10 patients yielded average dose inhomogeneities of -5.9%, -3.0%, +2.7%, and +5.8% with the dynamic technique as compared to -22.8%, -11.1%, +9.8%, and +22.1% with the SIHB technique. Calculation based on a dose-volume histogram (DVH) showed that the SIHB technique resulted in larger changes in EUD of the PTV in the junction area than did the dynamic technique.
Conclusion: Compared with the conventional SIHB technique, the dynamic field-matching technique provides superior dose homogeneity in the abutment region between the supraclavicular and HN IMRT fields. The dynamic feathering mechanism substantially reduces dose inhomogeneities that result from imperfect jaw/MLC calibration. In addition, isocenter location in the dynamic field-matching technique can be chosen for reproducible patient setup and for adequate IMRT field size rather than being dictated by the match position. It also allows angling of the supraclavicular field to reduce the volume of healthy lung irradiated, which is impractical with the SIHB technique. In principle, this technique should be applicable to any treatment site that requires the abutment of static and intensity-modulated fields.
Similar articles
-
Dosimetric assessment of the field abutment region in head and neck treatments using a multileaf collimator.Strahlenther Onkol. 2003 May;179(5):312-9. doi: 10.1007/s00066-003-1024-1. Strahlenther Onkol. 2003. PMID: 12740658
-
Matching IMRT fields with static photon field in the treatment of head-and-neck cancer.Med Dosim. 2005 Fall;30(3):135-8. doi: 10.1016/j.meddos.2005.03.007. Med Dosim. 2005. PMID: 16112462
-
Clinical implementation of intensity-modulated arc therapy.Int J Radiat Oncol Biol Phys. 2002 Jun 1;53(2):453-63. doi: 10.1016/s0360-3016(02)02777-3. Int J Radiat Oncol Biol Phys. 2002. PMID: 12023150 Clinical Trial.
-
Influence of the jaw tracking technique on the dose calculation accuracy of small field VMAT plans.J Appl Clin Med Phys. 2017 Jan;18(1):186-195. doi: 10.1002/acm2.12029. Epub 2017 Jan 3. J Appl Clin Med Phys. 2017. PMID: 28291941 Free PMC article. Review.
-
[Intensity modulated radiotherapy with dynamic multileaf collimator. Technique and clinical experience].Cancer Radiother. 1999 Sep-Oct;3(5):378-92. doi: 10.1016/s1278-3218(00)87976-7. Cancer Radiother. 1999. PMID: 10572508 Review. French.
Cited by
-
MLC-based penumbra softener of EDW borders to reduce junction inhomogeneities.J Appl Clin Med Phys. 2017 May;18(3):118-129. doi: 10.1002/acm2.12082. Epub 2017 Apr 19. J Appl Clin Med Phys. 2017. PMID: 28422401 Free PMC article.
-
Verification of field match lines in whole breast radiation therapy using Cherenkov imaging.Radiother Oncol. 2021 Jul;160:90-96. doi: 10.1016/j.radonc.2021.04.013. Epub 2021 May 1. Radiother Oncol. 2021. PMID: 33892022 Free PMC article.
-
An opposed matched field IMRT technique for prostate cancer patients with bilateral prosthetic hips.J Appl Clin Med Phys. 2012 Jan 5;13(1):3347. doi: 10.1120/jacmp.v13i1.3347. J Appl Clin Med Phys. 2012. PMID: 22231205 Free PMC article.
-
A novel dynamic field-matching technique for treatment of patients with para-aortic node-positive cervical cancer: Clinical experience.Rep Pract Oncol Radiother. 2016 Jan-Feb;21(1):37-41. doi: 10.1016/j.rpor.2015.09.003. Epub 2015 Nov 21. Rep Pract Oncol Radiother. 2016. PMID: 26900356 Free PMC article.
-
Total body irradiation with step translation and dynamic field matching.Biomed Res Int. 2013;2013:216034. doi: 10.1155/2013/216034. Epub 2013 Jul 1. Biomed Res Int. 2013. PMID: 23956971 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical