Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Oct;14(5):601-6.
doi: 10.1016/j.sbi.2004.09.001.

Biosynthesis of human-type N-glycans in heterologous systems

Affiliations
Review

Biosynthesis of human-type N-glycans in heterologous systems

Michael J Betenbaugh et al. Curr Opin Struct Biol. 2004 Oct.

Abstract

Insects, yeasts and plants generate widely different N-glycans, the structures of which differ significantly from those produced by mammals. The processing of the initial Glc2Man9GlcNAc2 oligosaccharide to Man8GlcNAc2 in the endoplasmic reticulum shows significant similarities among these species and with mammals, whereas very different processing events occur in the Golgi compartments. For example, yeasts can add 50 or even more Man residues to Man(8-9)GlcNAc2, whereas insect cells typically remove most or all Man residues to generate paucimannosidic Man(3-1)GlcNAc2N-glycans. Plant cells also remove Man residues to yield Man(4-5)GlcNAc2, with occasional complex GlcNAc or Gal modifications, but often add potentially allergenic beta(1,2)-linked Xyl and, together with insect cells, core alpha(1,3)-linked Fuc residues. However, genomic efforts, such as expression of exogenous glycosyltransferases, have revealed more complex processing capabilities in these hosts that are not usually observed in native cell lines. In addition, metabolic engineering efforts undertaken to modify insect, yeast and plant N-glycan processing pathways have yielded sialylated complex-type N-glycans in insect cells, and galactosylated N-glycans in yeasts and plants, indicating that cell lines can be engineered to produce mammalian-like glycoproteins of potential therapeutic value.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources