Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;15(10):2648-54.
doi: 10.1097/01.ASN.0000139933.20109.CB.

Delayed DMSO administration protects the kidney from mercuric chloride-induced injury

Affiliations

Delayed DMSO administration protects the kidney from mercuric chloride-induced injury

Sang-Kyung Jo et al. J Am Soc Nephrol. 2004 Oct.

Abstract

Reactive oxygen species are implicated as mediators of tissue damage in ischemic and toxic acute renal failure. Whereas many agents can inhibit renal ischemic injury, only hepatocyte growth factor, melatonin, N-acetylcysteine, and DMSO inhibit injury after mercuric chloride administration. Although it has been suggested that DMSO may chelate the mercuric ion, more recent studies suggest that it has anti-inflammatory and antioxidant effects. Acute renal failure was induced by 5 mg/kg subcutaneous injection of mercuric chloride in BALB/c mice. DMSO (3.8 ml/kg, 40% in PBS) or vehicle (PBS) was injected intraperitoneally at 0 and 24 h after mercuric chloride injection, or DMSO treatment was delayed 3 or 5 h. DMSO prevented increases in serum creatinine and tubular damage at 24 and 48 h. When DMSO treatment was delayed by 3 h, it was still beneficial; however, with a 5-h delay, the histology score and serum creatinine were not significantly decreased. DMSO partially prevented a mercuric chloride-induced decrease in glutathione peroxidase activity and completely prevented the transient decrease in superoxide dismutase activity. Neither mercuric chloride nor DMSO affected catalase activity significantly. For investigating possible effects of DMSO on cellular mercuric ion uptake, MDCK cells that were transfected with human organic anion transporter-1 were used. 203Hg uptake was inhibited 90% by N-acetylcysteine but only 5% by DMSO, indicating that the effect of DMSO is not related to chelating mercuric ion or inhibiting its uptake. It is concluded that DMSO acts in part as an antioxidant to inhibit mercuric chloride-induced acute renal injury.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources