Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;85(10):1638-46.
doi: 10.1016/j.apmr.2003.11.041.

Biomechanic changes in passive properties of hemiplegic ankles with spastic hypertonia

Affiliations

Biomechanic changes in passive properties of hemiplegic ankles with spastic hypertonia

Sun G Chung et al. Arch Phys Med Rehabil. 2004 Oct.

Abstract

Objective: To investigate quantitatively biomechanic changes in the passive properties of hemiplegic spastic ankles.

Design: Evaluation of spastic hypertonia by moving the ankle joint slowly between dorsiflexion and plantarflexion extreme positions under controlled joint torque and position.

Setting: Institutional research center.

Participants: Twenty-four stroke patients with spastic ankles and 32 healthy controls.

Interventions: Not applicable.

Main outcome measures: Passive resistance torque at controlled dorsiflexion and plantarflexion positions, dorsiflexion and plantarflexion range of motion (ROM) at controlled torques, and quasistatic stiffness and energy loss in dorsiflexion and plantarflexion.

Results: Spastic hypertonic ankles showed significant alterations of the passive properties in plantarflexion (P=.041) as well as in dorsiflexion (P=.016) directions. Compared with healthy controls, spastic ankles showed higher resistance torque (9.51+/-4.79Nm vs 6.21+/-3.64Nm, P=.016), higher quasistatic stiffness (.54+/-.19Nm/deg vs .35+/-.20Nm/deg, P=.001) at 10 degrees of dorsiflexion, larger normalized dorsiflexion energy loss (.068+/-.04J/deg vs .04+/-.02J/deg, P=.037), and decreased dorsiflexion ROM at 10Nm of resistance torque (10.77 degrees +/-8.69 degrees vs 20.02 degrees +/-11.67 degrees , P=.014). The resistance torque, ROM, and stiffness of spastic hypertonic ankles in plantarflexion showed similar changes (P<.05) to those in dorsiflexion. The passive ROM, joint stiffness, and resistance torque at controlled positions correlated with each other and also correlated with the Modified Ashworth Scale (P<.01).

Conclusions: Various biomechanic changes in both plantar- and dorsiflexors are associated with spastic hypertonia of chronic stroke patients, and they can be evaluated quantitatively under well-controlled conditions. With simplifications, the various measures in this study can potentially be used to obtain more comprehensive and quantitative evaluations of spastic hypertonia in a clinical setting.

PubMed Disclaimer

Publication types

LinkOut - more resources