Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Mar;93(3):1304-16.
doi: 10.1152/jn.00490.2004. Epub 2004 Oct 6.

Passive movements of the head do not abolish anticipatory firing properties of head direction cells

Affiliations
Free article
Comparative Study

Passive movements of the head do not abolish anticipatory firing properties of head direction cells

Joshua P Bassett et al. J Neurophysiol. 2005 Mar.
Free article

Abstract

Neurons in the anterior dorsal thalamic nucleus (ADN) of the rat selectively discharge in relation to the animal's head direction (HD) in the horizontal plane. Temporal analyses of cell firing properties reveal that their discharge is optimally correlated with the animal's future directional heading by approximately 24 ms. Among the hypotheses proposed to explain this property is that ADN HD cells are informed of future head movement via motor efference copy signals. One prediction of this hypothesis is that when the rat's head is moved passively, the anticipatory time interval (ATI) will be attenuated because the motor efference signal reflects only the active contribution to the movement. The present study tested this hypothesis by loosely restraining the animal and passively rotating it through the cell's preferred direction. Contrary to our prediction, we found that ATI values did not decrease during passive movement but in fact increased significantly. HD cells in the postsubiculum did not show the same effect, suggesting independence between the two sites with respect to anticipatory firing. We conclude that it is unlikely that a motor efference copy signal alone is responsible for generating anticipatory firing in ADN HD cells.

PubMed Disclaimer

Publication types

LinkOut - more resources