Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct 15;173(8):5298-304.
doi: 10.4049/jimmunol.173.8.5298.

Gamma-aminobutyric acid inhibits T cell autoimmunity and the development of inflammatory responses in a mouse type 1 diabetes model

Affiliations

Gamma-aminobutyric acid inhibits T cell autoimmunity and the development of inflammatory responses in a mouse type 1 diabetes model

Jide Tian et al. J Immunol. .

Abstract

Gamma-aminobutyric acid (GABA) is both a major inhibitory neurotransmitter in the CNS and a product of beta cells of the peripheral islets. Our previous studies, and those of others, have shown that T cells express functional GABAA receptors. However, their subunit composition and physiological relevance are unknown. In this study, we show that a subset of GABAA receptor subunits are expressed by CD4+ T cells, including the delta subunit that confers high affinity for GABA and sensitivity to alcohol. GABA at relatively low concentrations down-regulated effector T cell responses to beta cell Ags ex vivo, and administration of GABA retarded the adoptive transfer of type 1 diabetes (T1D) in NOD/scid mice. Furthermore, treatment with low dose of GABA (600 microg daily) dramatically inhibited the development of proinflammatory T cell responses and disease progression in T1D-prone NOD mice that already had established autoimmunity. Finally, GABA inhibited TCR-mediated T cell cycle progression in vitro, which may underlie GABA's therapeutic effects. The immunoinhibitory effects of GABA on T cells may contribute to the long prodomal period preceding the development of T1D, the immunological privilege of the CNS, and the regulatory effects of alcohol on immune responses. Potentially, pharmacological modulation of GABAA receptors on T cells may provide a new class of therapies for human T1D as well as other inflammatory diseases.

PubMed Disclaimer

Publication types