Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec 24;279(52):54398-404.
doi: 10.1074/jbc.M409579200. Epub 2004 Oct 7.

The nuclear tyrosine kinase BRK/Sik phosphorylates and inhibits the RNA-binding activities of the Sam68-like mammalian proteins SLM-1 and SLM-2

Affiliations
Free article

The nuclear tyrosine kinase BRK/Sik phosphorylates and inhibits the RNA-binding activities of the Sam68-like mammalian proteins SLM-1 and SLM-2

Andrea Haegebarth et al. J Biol Chem. .
Free article

Abstract

Expression of the intracellular tyrosine kinase BRK/Sik is epithelial-specific and regulated during differentiation. Only a few substrates have been identified for BRK/Sik, including the KH domain containing RNA-binding protein Sam68 and the novel adaptor protein BKS. Although the physiological role of Sam68 is unknown, it has been shown to regulate mRNA transport, pre-mRNA splicing, and polyadenylation. Here we demonstrate that the Sam68-like mammalian proteins SLM-1 and SLM-2 but not the related KH domain containing heterogeneous nuclear ribonucleoprotein K are novel substrates of BRK/Sik. The expression of active BRK/Sik results in increased SLM-1 and SLM-2 phosphorylation and increased retention of BRK/Sik within the nucleus. The phosphorylation of SLM-1 and SLM-2 has functional relevance and leads to inhibition of their RNA-binding abilities. We show that SLM-1, SLM-2, and BRK/Sik have restricted patterns of expression unlike the ubiquitously expressed Sam68. Moreover, BRK/Sik, SLM-1, and Sam68 transcripts were coexpressed in the mouse gastrointestinal tract and skin, suggesting that SLM-1 and Sam68 could be physiologically relevant BRK/Sik targets in vivo. The ability of BRK/Sik to negatively regulate the RNA-binding activities of the KH domain RNA binding proteins SLM-1 and Sam68 may have an impact on the posttranscriptional regulation of epithelial cell gene expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources