Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Oct;4(5):273-84.
doi: 10.1124/mi.4.5.7.

Mechanisms of radiation injury to the central nervous system: implications for neuroprotection

Affiliations
Review

Mechanisms of radiation injury to the central nervous system: implications for neuroprotection

C Shun Wong et al. Mol Interv. 2004 Oct.

Abstract

The central nervous system (CNS) is a major dose-limiting organ in clinical radiotherapy (XRT). The underlying mechanisms of radiation-induced injury in this organ remain unclear. For many years, research has focused on identifying the major target cells of damage, and depletion of target cells due to reproductive or clonogenic cell death was believed to be the primary cause of tissue damage and organ failure. There is now an increasing body of data indicating that the response of the CNS after XRT is a continuous and interacting process. This review addresses some of the recent advances in our understanding of the mechanisms of CNS radiation damage. Specifically, the focus is on apoptotic cell death, and cell death and injury mediated by secondary damage. These potentially reversible components of the injury response provide important targets for neuroprotective interventions.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources