Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Mar 17;31(10):2812-8.
doi: 10.1021/bi00125a023.

Multiple mechanisms regulate the proliferation-specific histone gene transcription factor HiNF-D in normal human diploid fibroblasts

Affiliations

Multiple mechanisms regulate the proliferation-specific histone gene transcription factor HiNF-D in normal human diploid fibroblasts

K L Wright et al. Biochemistry. .

Abstract

The proliferation-specific transcription factor complex HiNF-D interacts with sequence specificity in a proximal promoter element of the human H4 histone gene FO108, designated Site II. The occupancy of Site II by HiNF-D has been implicated in proper transcription initiation and as a component of the cell cycle regulation of this gene. In the present study we have investigated the role of the HiNF-D/Site II interaction in controlling the level of H4 histone gene transcription during modifications of normal cellular growth. HiNF-D binding activity is present at high levels in rapidly proliferating cultures of human diploid fibroblasts and is reduced to less than 2% upon the cessation of proliferation induced by serum deprivation of sparsely population fibroblast cultures. Density-dependent quiescence also abolishes HiNF-D binding activity. Downregulation of transcription from the H4 gene occurs concomitant with the loss of the HiNF-D/Site II interaction, further suggesting a functional relationship between Site II occupancy and the capacity for transcription. Serum stimulation of quiescent preconfluent cells results in an increase in HiNF-D binding activity as the cells are resuming DNA synthesis and H4 histone gene transcription. Density-inhibited quiescent cells respond to serum stimulation with only a minimal increase in the HiNF-D binding activity, 30% of maximal levels. However, H4 histone gene transcription is stimulated to a level equal to that detected in extracts of the sparsely populated serum-stimulated cultures. These results suggest that there is a threshold level of HiNF-D binding activity necessary for the activation of H4 histone gene transcription.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types