Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004;14(4):447-54.

The use of hydrophobins to functionalize surfaces

Affiliations
  • PMID: 15472393
Comparative Study

The use of hydrophobins to functionalize surfaces

K Scholtmeijer et al. Biomed Mater Eng. 2004.

Abstract

The physiochemical nature of surfaces can be changed by small proteins which are secreted by filamentous fungi. These proteins, called hydrophobins, are characterized by the presence of eight conserved cysteine residues and a typical hydropathy pattern. Upon contact with a hydrophilic-hydrophobic interface they self-assemble into highly insoluble amphipathic membranes. As a result, hydrophobic surfaces become hydrophilic and vice versa. Genetic engineering of hydrophobins was used to study structure-function relationships. In addition, engineered hydrophobins were constructed to increase the biocompatibility of surfaces. The glycosylated N-terminal region of the mature SC3 hydrophobin was deleted and the cell-binding domain of human fibronectin was introduced at the N-terminus. The gross properties of the hydrophobins were not affected. However, the physiochemical properties of the hydrophilic side of the assembled protein did change. Growth of fibroblasts on Teflon could be improved by coating the solid with the engineered hydrophobins. Thus, by changing the N-terminal part of hydrophobins, the physiochemical nature of the hydrophilic side of the assembled form can be altered and a variety of new functionalities introduced. The fact that hydrophobins self-assemble at any hydrophilic-hydrophobic interface, irrespective of the chemical nature of the surface, therefore provides a generic approach to modify surfaces and make them interesting candidates for the use in various technical and medical applications.

PubMed Disclaimer

MeSH terms

LinkOut - more resources