Evidence for turnover of functional noncoding DNA in mammalian genome evolution
- PMID: 15475259
- DOI: 10.1016/j.ygeno.2004.07.012
Evidence for turnover of functional noncoding DNA in mammalian genome evolution
Abstract
The vast majority of the mammalian genome does not code for proteins, and a fundamental question in genomics is: What proportion of the noncoding mammalian genome is functional? Most attempts to address this issue use sequence comparisons between highly diverged mammals such as human and mouse to identify conservation due to negative selection. But such comparisons will underestimate the true proportion of functional noncoding DNA if there is turnover, if patterns of negative selection change over time. Here we test whether the inferred level of negative selection differs between different pairwise species comparisons. Using a multiple alignment of more than a megabase of contiguous sequence from eight mammalian species, we find a strong negative relationship between inferred levels of negative selection and pairwise divergence using 21 pairwise comparisons. This result suggests that there is a high rate of turnover of functional noncoding elements in the mammalian genome, so measures of functional constraint based on human-mouse comparisons may seriously underestimate the true value.
Similar articles
-
Noncoding sequences conserved in a limited number of mammals in the SIM2 interval are frequently functional.Genome Res. 2004 Mar;14(3):367-72. doi: 10.1101/gr.1961204. Epub 2004 Feb 12. Genome Res. 2004. PMID: 14962988 Free PMC article.
-
High intron sequence conservation across three mammalian orders suggests functional constraints.Mol Biol Evol. 2003 Jun;20(6):969-78. doi: 10.1093/molbev/msg111. Epub 2003 Apr 25. Mol Biol Evol. 2003. PMID: 12716984
-
Comparison of human chromosome 21 conserved nongenic sequences (CNGs) with the mouse and dog genomes shows that their selective constraint is independent of their genic environment.Genome Res. 2004 May;14(5):852-9. doi: 10.1101/gr.1934904. Epub 2004 Apr 12. Genome Res. 2004. PMID: 15078857 Free PMC article.
-
The evolution of noncoding DNA: how much junk, how much func?Trends Genet. 2005 Oct;21(10):533-6. doi: 10.1016/j.tig.2005.08.001. Trends Genet. 2005. PMID: 16098630 Review.
-
Bioinformatics for the 'bench biologist': how to find regulatory regions in genomic DNA.Nat Immunol. 2004 Aug;5(8):768-74. doi: 10.1038/ni0804-768. Nat Immunol. 2004. PMID: 15282556 Review.
Cited by
-
The State of Long Non-Coding RNA Biology.Noncoding RNA. 2018 Aug 10;4(3):17. doi: 10.3390/ncrna4030017. Noncoding RNA. 2018. PMID: 30103474 Free PMC article.
-
29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome.PLoS One. 2012;7(8):e43128. doi: 10.1371/journal.pone.0043128. Epub 2012 Aug 27. PLoS One. 2012. PMID: 22952639 Free PMC article.
-
Splendor and misery of adaptation, or the importance of neutral null for understanding evolution.BMC Biol. 2016 Dec 23;14(1):114. doi: 10.1186/s12915-016-0338-2. BMC Biol. 2016. PMID: 28010725 Free PMC article.
-
The genetic signatures of noncoding RNAs.PLoS Genet. 2009 Apr;5(4):e1000459. doi: 10.1371/journal.pgen.1000459. Epub 2009 Apr 24. PLoS Genet. 2009. PMID: 19390609 Free PMC article. Review.
-
Insights into the evolution of Darwin's finches from comparative analysis of the Geospiza magnirostris genome sequence.BMC Genomics. 2013 Feb 12;14:95. doi: 10.1186/1471-2164-14-95. BMC Genomics. 2013. PMID: 23402223 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources