Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct 18;43(21):6848-57.
doi: 10.1021/ic040022c.

Studies on the formation of glutathionylcobalamin: any free intracellular aquacobalamin is likely to be rapidly and irreversibly converted to glutathionylcobalamin

Affiliations

Studies on the formation of glutathionylcobalamin: any free intracellular aquacobalamin is likely to be rapidly and irreversibly converted to glutathionylcobalamin

Ling Xia et al. Inorg Chem. .

Abstract

A decade ago Jacobsen and co-workers reported the first evidence for the presence of glutathionylcobalamin (GSCbl) in mammalian cells and suggested that it could in fact be a precursor to the formation of the two coenzyme forms of vitamin B(12), adenosylcobalamin and methylcobalamin (Pezacka et al. Biochem. Biophys. Res. Commun. 1990, 169, 443). It has also recently been proposed by McCaddon and co-workers that GSCbl may be useful for the treatment of Alzheimer's disease (McCaddon et al. Neurology 2002, 58, 1395). Aquacobalamin is one of the major forms of vitamin B(12) isolated from mammalian cells, and high concentrations of glutathione (1-10 mM) are also found in cells. We have now determined observed equilibrium constants, K(obs)(GSCbl), for the formation of GSCbl from aquacobalamin and glutathione in the pH range 4.50-6.00. K(obs)(GSCbl) increases with increasing pH, and this increase is attributed to increasing amounts of the thiolate forms (RS(-)) of glutathione. An estimate for the equilibrium constant for the formation of GSCbl from aquacobalamin and the thiolate forms of glutathione of approximately 5 x 10(9) M(-1) is obtained from the data. Hence, under biological conditions the formation of GSCbl from aquacobalamin and glutathione is essentially irreversible. The rate of the reaction between aquacobalamin/hydroxycobalamin and glutathione for 4.50 < pH < 11.0 has also been studied and the observed rate constant for the reaction was found to decrease with increasing pH. The data were fitted to a mechanism in which each of the 3 macroscopic forms of glutathione present in this pH region react with aquacobalamin, giving k(1) = 18.5 M(-1) s(-1), k(2) = 28 +/- 10 M(-1) s(-1), and k(3) = 163 +/- 8 M(-1) s(-1). The temperature dependence of the observed rate constant at pH 7.40 ( approximately k(1)) was also studied, and activation parameters were obtained typical of a dissociative process (DeltaH++ = 81.0 +/- 0.5 kJ mol(-1) and DeltaS++ = 48 +/- 2 J K(-1) mol(-1)). Formation of GSCbl from aquacobalamin is rapid; for example, at approximately 5 mM concentrations of glutathione and at 37 degrees C, the half-life for formation of GSCbl from aquacobalamin and glutathione is 2.8 s. On the basis of our equilibrium and rate-constant data we conclude that, upon entering cells, any free (protein-unbound) aquacobalamin could be rapidly and irreversibly converted to GSCbl. GSCbl may indeed play an important role in vitamin B(12)-dependent processes.

PubMed Disclaimer

LinkOut - more resources