Bone loss at the os calcis compared with bone loss at the knee in individuals with spinal cord injury
- PMID: 15478521
- DOI: 10.1080/10790268.2004.11753749
Bone loss at the os calcis compared with bone loss at the knee in individuals with spinal cord injury
Abstract
Background/objective: The objective of this study was to document acute bone loss at the os calcis and compare it with bone loss at the knee following spinal cord injury (SCI) as a potential proxy for bone loss in individuals with SCI.
Methods: Bone mineral density (BMD) was measured by dual energy x-ray absorptiometry (DEXA) at the knee and os calcis, which also was assessed by ultrasound in 6 individuals--5 with complete SCI and 1 with incomplete SCI--at means of 33.5 and 523 days following injury.
Results: Bone mineral was progressively greater as measured from proximal to distal sites. The net average BMD of the knee declined 24% (P = 0.017). The distal femur lost 27% (P = 0.038) and the proximal tibia lost 32% (P = 0.015), whereas the os calcis lost 38% (P = 0.001) as measured by DEXA and 49% (P < 0.001) as estimated from ultrasound. The mean loss of 24% at the knee was significantly different from the loss percentages at the os calcis as measured by both techniques: DEXA (P = 0.036) and ultrasound (P = 0.043). Differences between annualized loss rates at the knee and the os calcis measured by both techniques also were significant: DEXA (P = 0.032) vs ultrasound (P = 0.038). However, annualized loss rates demonstrated the same trend for differential loss at the sites examined in the 5 individuals with complete injuries but not for the 1 participant with an incomplete injury. The loss rates were similar for the complete and incomplete participants at the os calcis, but not at the knee.
Conclusion: The BMD of the os calcis declined 38% by DEXA and 49% by ultrasound compared with 24% at the knee when measured 1 to 1.5 years after injury. BMD of the os calcis and distal femur measured by DEXA in persons with complete SCI were highly correlated (r = 0.84, P < 0.0001).
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical