Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Oct:(427 Suppl):S105-17.
doi: 10.1097/01.blo.0000143560.41767.ee.

Biology of developmental and regenerative skeletogenesis

Affiliations
Review

Biology of developmental and regenerative skeletogenesis

Rocky S Tuan. Clin Orthop Relat Res. 2004 Oct.

Abstract

Embryonic skeletal development involves the recruitment, commitment, differentiation, and maturation of mesenchymal cells into those in the skeletal tissue lineage, specifically cartilage and bone along the intramembranous and endochondral ossification pathways. The exquisite control of skeletal development is regulated at the level of gene transcription, cellular signaling, cell-cell and cell-matrix interactions, as well as systemic modulation. Mediators include transcription factors, growth factors, cytokines, metabolites, hormones, and environmentally derived influences. Understanding the mechanisms underlying developmental skeletogenesis is crucial to harnessing the inherent regenerative potential of skeletal tissues for wound healing and repair, as well as for functional skeletal tissue engineering. In this review, a number of key issues are discussed concerning the current and future challenges of the scientific investigation of developmental skeletogenesis in the embryo, specifically limb cartilage development, and how these challenges relate to regenerative or reparative skeletogenesis in the adult. Specifically, a more complete understanding the biology of skeletogenic progenitor cells and the cellular and molecular mechanisms governing tissue patterning and morphogenesis should greatly facilitate the development of regenerative approaches to cartilage repair.

PubMed Disclaimer

LinkOut - more resources