Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats
- PMID: 15485896
- PMCID: PMC522238
- DOI: 10.1128/MCB.24.21.9265-9273.2004
Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats
Abstract
Notch proteins are transmembrane receptors that participate in a highly conserved signaling pathway that regulates morphogenesis in metazoans. Newly synthesized Notch receptors are proteolytically cleaved during transit to the cell surface, creating heterodimeric mature receptors comprising noncovalently associated extracellular (N(EC)) and transmembrane (N) subunits. Ligand binding activates Notch by inducing two successive proteolytic cleavages, catalyzed by metalloproteases and gamma-secretase, respectively, that permit the intracellular portion of N to translocate to the nucleus and activate transcription of target genes. Prior work has shown that the presence of N(EC) prevents ligand-independent activation of N, but the mechanisms involved are poorly understood. Here, we define the roles of two regions at the C-terminal end of N(EC) that participate in maintaining the integrity of resting Notch receptors through distinct mechanisms. The first region, a hydrophobic, previously uncharacterized portion of N(EC), is sufficient to form stable complexes with the extracellular portion of N. The second region, consisting of the three Lin12/Notch repeats, is not needed for heterodimerization but acts to protect N from ligand-independent cleavage by metalloproteases. Together, these two contiguous regions of N(EC) impose crucial restraints that prevent premature Notch receptor activation.
Figures







Similar articles
-
Nuclear magnetic resonance structure of a prototype Lin12-Notch repeat module from human Notch1.Biochemistry. 2003 Jun 17;42(23):7061-7. doi: 10.1021/bi034156y. Biochemistry. 2003. PMID: 12795601
-
Calcium depletion dissociates and activates heterodimeric notch receptors.Mol Cell Biol. 2000 Mar;20(5):1825-35. doi: 10.1128/MCB.20.5.1825-1835.2000. Mol Cell Biol. 2000. PMID: 10669757 Free PMC article.
-
Ectodomain shedding and intramembrane cleavage of mammalian Notch proteins is not regulated through oligomerization.J Biol Chem. 2004 Dec 3;279(49):50864-73. doi: 10.1074/jbc.M409430200. Epub 2004 Sep 23. J Biol Chem. 2004. PMID: 15448134
-
The effects of conformational heterogeneity on the binding of the Notch intracellular domain to effector proteins: a case of biologically tuned disorder.Biochem Soc Trans. 2008 Apr;36(Pt 2):157-66. doi: 10.1042/BST0360157. Biochem Soc Trans. 2008. PMID: 18363556 Review.
-
Notch signaling as a therapeutic target.Curr Opin Chem Biol. 2002 Aug;6(4):501-9. doi: 10.1016/s1367-5931(02)00346-0. Curr Opin Chem Biol. 2002. PMID: 12133727 Review.
Cited by
-
DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur.J Cell Biol. 2007 Feb 12;176(4):445-58. doi: 10.1083/jcb.200609014. J Cell Biol. 2007. PMID: 17296795 Free PMC article.
-
Detection of NOTCH1 mutations in adult T-cell leukemia/lymphoma and peripheral T-cell lymphoma.Int J Hematol. 2007 Apr;85(3):212-8. doi: 10.1532/IJH97.06165. Int J Hematol. 2007. PMID: 17483057
-
Notch signaling in oral pre-cancer and oral cancer.Med Oncol. 2021 Oct 11;38(12):139. doi: 10.1007/s12032-021-01593-9. Med Oncol. 2021. PMID: 34633549 Review.
-
Molecular Mechanisms in the Transformation from Indolent to Aggressive B Cell Malignancies.Cancers (Basel). 2025 Mar 6;17(5):907. doi: 10.3390/cancers17050907. Cancers (Basel). 2025. PMID: 40075754 Free PMC article. Review.
-
Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes.Mol Cell Biol. 2006 Jun;26(12):4642-51. doi: 10.1128/MCB.01655-05. Mol Cell Biol. 2006. PMID: 16738328 Free PMC article.
References
-
- Artavanis-Tsakonas, S., M. D. Rand, and R. J. Lake. 1999. Notch signaling: cell fate control and signal integration in development. Science 284:770-776. - PubMed
-
- Aster, J., W. Pear, R. Hasserjian, H. Erba, F. Davi, B. Luo, M. Scott, D. Baltimore, and J. Sklar. 1994. Functional analysis of the TAN-1 gene, a human homolog of Drosophila notch. Cold Spring Harbor Symp. Quant. Biol. 59:125-136. - PubMed
-
- Aster, J. C., W. B. Simms, Z. Zavala-Ruiz, V. Patriub, C. L. North, and S. C. Blacklow. 1999. The folding and structural integrity of the first LIN-12 module of human Notch1 are calcium-dependent. Biochemistry 38:4736-4742. - PubMed
-
- Bellavia, D., A. F. Campese, E. Alesse, A. Vacca, M. P. Felli, A. Balestri, A. Stoppacciaro, C. Tiveron, L. Tatangelo, M. Giovarelli, C. Gaetano, L. Ruco, E. S. Hoffman, A. C. Hayday, U. Lendahl, L. Frati, A. Gulino, and I. Screpanti. 2000. Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J. 19:3337-3348. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources