Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;3(10):1221-7.

Inhibition of Chk1 by the G2 DNA damage checkpoint inhibitor isogranulatimide

Affiliations
  • PMID: 15486189

Inhibition of Chk1 by the G2 DNA damage checkpoint inhibitor isogranulatimide

Xiuxian Jiang et al. Mol Cancer Ther. 2004 Oct.

Abstract

Inhibitors of the G(2) DNA damage checkpoint can selectively sensitize cancer cells with mutated p53 to killing by DNA-damaging agents. Isogranulatimide is a G(2) checkpoint inhibitor containing a unique indole/maleimide/imidazole skeleton identified in a phenotypic cell-based screen; however, the mechanism of action of isogranulatimide is unknown. Using natural and synthetic isogranulatimide analogues, we show that the imide nitrogen and a basic nitrogen at position 14 or 15 in the imidazole ring are important for checkpoint inhibition. Isogranulatimide shows structural resemblance to the aglycon of UCN-01, a potent bisindolemaleimide inhibitor of protein kinase C beta (IC(50), 0.001 micromol/L) and of the checkpoint kinase Chk1 (IC(50), 0.007 micromol/L). In vitro kinase assays show that isogranulatimide inhibits Chk1 (IC(50), 0.1 micromol/L) but not protein kinase C beta. Of 13 additional protein kinases tested, isogranulatimide significantly inhibits only glycogen synthase kinase-3beta (IC(50), 0.5 micromol/L). We determined the crystal structure of the Chk1 catalytic domain complexed with isogranulatimide. Like UCN-01, isogranulatimide binds in the ATP-binding pocket of Chk1 and hydrogen bonds with the backbone carbonyl oxygen of Glu(85) and the amide nitrogen of Cys(87). Unlike UCN-01, the basic N15 of isogranulatimide interacts with Glu(17), causing a conformation change in the kinase glycine-rich loop that may contribute importantly to inhibition. The mechanism by which isogranulatimide inhibits Chk1 and its favorable kinase selectivity profile make it a promising candidate for modulating checkpoint responses in tumors for therapeutic benefit.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources