Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov;40(5):1047-52.
doi: 10.1002/hep.20460.

Frequent inactivation of the tumor suppressor Kruppel-like factor 6 (KLF6) in hepatocellular carcinoma

Affiliations

Frequent inactivation of the tumor suppressor Kruppel-like factor 6 (KLF6) in hepatocellular carcinoma

Sigal Kremer-Tal et al. Hepatology. 2004 Nov.

Abstract

Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, reflecting incomplete characterization of underlying mechanisms and lack of early detection. Kruppel-like factor 6 (KLF6) is a ubiquitously expressed zinc finger transcription factor that is deregulated in multiple cancers through loss of heterozygosity (LOH) and/or inactivating somatic mutation. We analyzed the potential role of the KLF6 tumor suppressor gene in 41 patients who had HCC associated with hepatitis C virus (16 patients), hepatitis B virus (12 patients, one of whom was coinfected with hepatitis C virus), and other etiologies (14 patients) by determining the presence of LOH and mutations. Overall, LOH and/or mutations were present in 20 (49%) of 41 tumors. LOH of the KLF6 gene locus was present in 39% of primary HCCs, and the mutational frequency was 15%. LOH and/or mutations were distributed across all etiologies of HCC evaluated, including patients who did not have cirrhosis. Functionally, wild-type KLF6 decreased cellular proliferation of HepG2 cells, while patient-derived mutants did not. In conclusion, we propose that KLF6 is deregulated by loss and/or mutation in HCC, and its inactivation may contribute to pathogenesis in a significant number of these tumors.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources