Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Sep;31(9):2636-47.
doi: 10.1118/1.1786692.

A comparison of reconstruction algorithms for breast tomosynthesis

Affiliations
Comparative Study

A comparison of reconstruction algorithms for breast tomosynthesis

Tao Wu et al. Med Phys. 2004 Sep.

Abstract

Three algorithms for breast tomosynthesis reconstruction were compared in this paper, including (1) a back-projection (BP) algorithm (equivalent to the shift-and-add algorithm), (2) a Feldkamp filtered back-projection (FBP) algorithm, and (3) an iterative Maximum Likelihood (ML) algorithm. Our breast tomosynthesis system acquires 11 low-dose projections over a 50 degree angular range using an a-Si (CsI:Tl) flat-panel detector. The detector was stationary during the acquisition. Quality metrics such as signal difference to noise ratio (SDNR) and artifact spread function (ASF) were used for quantitative evaluation of tomosynthesis reconstructions. The results of the quantitative evaluation were in good agreement with the results of the qualitative assessment. In patient imaging, the superimposed breast tissues observed in two-dimensional (2D) mammograms were separated in tomosynthesis reconstructions by all three algorithms. It was shown in both phantom imaging and patient imaging that the BP algorithm provided the best SDNR for low-contrast masses but the conspicuity of the feature details was limited by interplane artifacts; the FBP algorithm provided the highest edge sharpness for microcalcifications but the quality of masses was poor; the information of both the masses and the microcalcifications were well restored with balanced quality by the ML algorithm, superior to the results from the other two algorithms.

PubMed Disclaimer

MeSH terms

LinkOut - more resources