Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004:390:310-36.
doi: 10.1016/S0076-6879(04)90020-1.

Characterization of GRK2 RH domain-dependent regulation of GPCR coupling to heterotrimeric G proteins

Affiliations

Characterization of GRK2 RH domain-dependent regulation of GPCR coupling to heterotrimeric G proteins

Rachel Sterne-Marr et al. Methods Enzymol. 2004.

Abstract

Heterotrimeric guanine nucleotide (G)-coupled receptors (GPCRs) form the largest family of integral membrane proteins. GPCR activation by an agonist promotes the exchange of GDP for GTP on the Galpha subunit of the heterotrimeric G protein. The dissociated Galpha and Gbetagamma subunits subsequently modulate the activity of a diverse assortment of effector systems. GPCR signaling via heterotrimeric G proteins is attenuated rapidly by the engagement of protein kinases. The canonical model for GPCR desensitization involves G protein-coupled receptor kinase (GRK)-dependent receptor phosphorylation to promote the binding of arrestin proteins that function to sterically block receptor:G-protein interactions. GRK2 and GRK3 have been shown to interact with Galphaq via the regulator of G-protein signaling (RGS) homology (RH) domain localized within their amino-terminal domains. It now appears that the G-protein uncoupling of many GPCRs linked to Galphaq, in particularly metabotropic glutamate receptors, may be mediated by the GRK2 RH domain via a phosphorylation-independent mechanism. This article reviews much of the background and methodology required for the characterization of the GRK2 phosphorylation-independent attenuation of GPCR signaling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources