Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Nov 11;370(2-3):155-9.
doi: 10.1016/j.neulet.2004.08.015.

4-Hydroxynonenal modulates the long-term potentiation induced by L-type Ca2+ channel activation in the rat dentate gyrus in vitro

Affiliations
Comparative Study

4-Hydroxynonenal modulates the long-term potentiation induced by L-type Ca2+ channel activation in the rat dentate gyrus in vitro

Tatsuhiro Akaishi et al. Neurosci Lett. .

Abstract

Increased oxyradical production and membrane lipid peroxidation (MLP) occur under physiological and degenerative conditions in neurons. We investigated whether 4-hydroxynonenal (4HN), one of the membrane lipid peroxidation products, affects long-term potentiation (LTP) in the rat dentate gyrus in vitro. Treatment of hippocampal slices with 4HN (10 microM) enhanced LTP without affecting basal evoked potentials. The enhancement was completely inhibited by 2 microM nifedipine, a blocker of L-type Ca2+ channels. In cultured dentate gyrus neurons, treatment of the cells with 4HN for 24 h resulted in a significant amount of cell death that was detoxified by glutathione, whereas short-term treatment with 4HN (< or = 6 h) had no effect. Nifedipine partially but significantly suppressed the 4HN-induced cell death. These results suggest that 4HN modulates LTP and induces delayed cell death through L-type Ca2+ channel activation in the dentate gyrus. 4HN thereby plays an important role in both physiological and pathophysiological events in the hippocampus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources