Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004;30(3):173-85.
doi: 10.1080/10408410490435151.

The physiological role of ferritin-like compounds in bacteria

Affiliations
Review

The physiological role of ferritin-like compounds in bacteria

James L Smith. Crit Rev Microbiol. 2004.

Abstract

Iron, as the ferrous or ferric ion, is essential for the life processes of all eukaryotes and most prokaryotes; however, the element is toxic when in excess of that needed for cellular homeostasis. Ferrous ions can react with metabolically generated hydrogen peroxide to yield toxic hydroxyl radicals that in turn degrade lipids, DNA, and other cellular biomolecules. Mechanisms have evolved in living systems for iron detoxification and for the removal of excess ferrous ions from the cytosol. These detoxification mechanisms involve the oxidation of excess ferrous ions to the ferric state and storage of the ferric ions in ferritin-like proteins. There are at least three types of ferritin-like proteins in bacteria: bacterial ferritin, bacterioferritin, and dodecameric ferritin. These bacterial proteins are related to the ferritins found in eukaryotes. The structure and physical characteristics of the ferritin-like compounds have been elucidated in several bacteria. Unfortunately, the physiological roles of the bacterial ferritin-like compounds have been less thoroughly studied. A few studies conducted with mutants indicated that ferritin-like compounds can protect bacterial cells from iron overload, serve as an iron source when iron is limited, protect the bacterial cells against oxidative stress and/or protect DNA against enzymatic or oxidative attack. There is very little information available concerning the roles that ferritin-like compounds might play in the survival of bacteria in food, water, soil, or eukaryotic host environments.

PubMed Disclaimer

MeSH terms

LinkOut - more resources